
UNIT-5: MICROPROCESSOR (ARCHITECTURE AND PROGRAMMING -8086-16 BIT)

5.1 INTRODUCTION:

 8086 Microprocessor is an enhanced version of 8085Microprocessor that was
designed by Intel in 1976.

 It is a 16-bit Microprocessor having 20 address lines and16 data lines that
provides up to 1MB storage.

 It consists of powerful instruction set, which provides operations like
multiplication and division easily.

 It supports two modes of operation, i.e. Maximum mode and Minimum mode.

 Maximum mode is suitable for system having multiple processors and Minimum
mode is suitable for system having a single processor.

 5.2 8086 MICROPROCESSOR FEATURES:

 It is 16-bit microprocessor

 It has a 16-bit data bus, so it can read data from or write data to memory and

ports either 16-bit or 8-bit at a time.

 It has 20 bit address bus and can access up to 220 memory locations (1 MB).

 It can support up to 64K I/O ports

 It provides 14, 16-bit registers

 It has multiplexed address and data bus AD0-AD15 & A16-A19

 It requires single phase clock with 33% duty cycle to provide internal timing.

 Pre fetches up to 6 instruction bytes from memory and queues them in order to

speed up the processing.

 8086 supports 2 modes of operation

1. Minimum mode

2. Maximum mode

 It is available in 3 versions based on the frequency of operation −

1. 8086 → 5MHz

2. 8086-2 → 8MHz

3. (c)8086-1 → 10 MHz

 It uses two stages of pipelining, i.e. fetch Stage and Execute Stage, which

improves performance.

 Fetch stage can pre fetch up to 6 bytes of instructions and stores them in the

queue.

 Execute stage executes these instructions.

 It has 256 vectored interrupts.

 It consists of 29,000 transistors.

5.3 REGISTER ORGANIZATION:

 8086 has a powerful set of registers known as general purpose registers and
special purpose registers.

 All of them are 16-bit registers.

 General purpose registers:

 These registers can be used as either 8-bit registers or 16-bit registers.

 They may be either used for holding data, variables and intermediate results

temporarily or for other purposes like a counter or for storing offset address

for some particular addressing modes etc.

 Special purpose registers:

 These registers are used as segment registers, pointers, index registers or as

offset storage registers for particular addressing modes.

 The 8086 registers are classified into the following types:

 General Data Registers

 Segment Registers

 Pointers and Index Registers

 Flag Register

 1. General Data Registers:

 The registers AX, BX, CX and DX are the general purpose 16-bit registers.

 AX is used as 16-bit accumulator. The lower 8-bit is designated as AL and

higher 8-bit is designated as AH.

 AL Can be used as an 8-bit accumulator for 8-bit operation.

 All data register can be used as either 16 bit or 8 bit. BX is a 16 bit register,

but BL indicates the lower 8-bit of BX and BH indicates the higher 8-bit of BX.

 The register BX is used as offset storage for forming physical address in case
of certain addressing modes.

 The register CX is used default counter in case of string and loop instructions.

 DX register is a general purpose register which may be used as an implicit

operand or destination in case of a few instructions.

 2. Segment Registers:

 There are 4 segment registers. They are:

 Code Segment Register(CS)

 Data Segment Register(DS)

 Extra Segment Register(ES)

 Stack Segment Register(SS)

 The 8086 architecture uses the concept of segmented memory. 8086 able
to address a memory capacity of 1 megabyte and it is byte organized. This 1
megabyte memory is divided into 16 logical segments. Each segment
contains 64 Kbytes of memory.

 Code segment register (CS):

It is used for addressing memory location in the code segment of the
memory, where the executable program is stored.

 Data segment register (DS):
It points to the data segment of the memory where the data is stored.

 Extra Segment Register (ES) :
It also refers to a segment in the memory which is another data segment in
the memory.

 Stack Segment Register (SS):
 It is used for addressing stack segment of the memory. The stack segment

is that segment of memory which is used to store stack data.
 While addressing any location in the memory bank, the physical address

is calculated from two parts:

Physical address= segment address + offset address

 The first is segment address, the segment registers contain 16-bit

segment base addresses, related to different segment.

 The second part is the offset value in that segment.
 3. Pointers and Index Registers:

 The index and pointer registers are given below:

 IP—Instruction pointer-store memory location of next instruction to be
executed

 BP—Base pointer

 SP—Stack pointer

 SI—Source index

 DI—Destination index

 The pointers registers contain offset within the particular segments.

 The pointer register IP contains offset within the code segment.

 The pointer register BP contains offset within the data segment.

 Thee pointer register SP contains offset within the stack segment.

 The index registers are used as general purpose registers as well as for offset

storage in case of indexed, base indexed and relative base indexed addressing

modes.

 The register SI is used to store the offset of source data in data segment.

 The register DI is used to store the offset of destination in data or extra
segment.

 The index registers are particularly useful for string manipulation.

 4. 8086 flag register and its functions:

 The 8086 flag register contents indicate the results of computation in the ALU.

It also contains some flag bits to control the CPU operations.

 A 16 bit flag register is used in 8086. It is divided into two parts.

 Condition code or status flags

 Machine control flags

 The condition code flag register is the lower byte of the 16-bit flag register.

The condition code flag register is identical to 8085 flag register, with an

additional overflow flag.

 The control flag register is the higher byte of the flag register. It contains

three flags namely direction flag (D), interrupt flag (I) and trap flag (T).

Flag register configuration

 The description of each flag bit is as follows:

SF (Sign Flag):

This flag is set, when the result of any computation is negative. For signed

computations the sign flag equals the MSB of the result.

ZF (Zero Flag):

 This flag is set, if the result of the computation or comparison performed by

the previous instruction is zero.

PF (Parity Flag):
 This flag is set to 1, if the lower byte of the result contains even number of 1’s.

CF (Carry Flag):
 This flag is set, when there is a carry out of MSB in case of addition or a borrow
in case of subtraction.

AF (Auxiliary Carry Flag):

 This is set, if there is a carry from the lowest nibble, i.e., bit three during

addition, or borrow for the lowest nibble, i.e., bit three, during subtraction.

OF (Over flow Flag):

 This flag is set, if an overflow occurs, i.e., if the result of a signed operation is

large enough to accommodate in a destination register. The result is of more

than 7-bits in size in case of 8-bit signed operation and more than 15-bits in

size in case of 16-bit sign operations, and then the overflow will be set.

TF (Tarp Flag):

If this flag is set, the processor enters the single step execution mode. The

processor executes the current instruction and the control is transferred to the

Trap interrupt service routine.

IF (Interrupt Flag):
If this flag is set, the mask able interrupts are recognized by the CPU, otherwise
they are ignored.

D (Direction Flag):

This is used by string manipulation instructions. If this flag bit is ‘0’, the string

is processed beginning from the lowest address to the highest address, i.e.,

auto incrementing mode. Otherwise, the string is processed from the highest

address towards the lowest address, i.e., auto decrementing mode.

5.4 ARCHITECTURE OF 8086 MICROPROCESSOR:
 As shown in the below figure, the 8086 CPU is divided into two independent

functional parts
 Bus Interface Unit(BIU)
 Execution Unit(EU)

 Dividing the work between these two units’ speeds up processing.

The Execution Unit (EU):

 The execution unit of the 8086 tells the BIU where to fetch instructions or data

from, decodes instructions, and executes instructions.

 The EU contains control circuitry, which directs internal operations.

 A decoder in the EU translates instructions fetched from memory into a series

of actions, which the EU carries out.

 The EU has a 16-bit arithmetic logic unit (ALU) which can add, subtract, AND,

OR, XOR, increment, decrement, complement or shift binary numbers.

 The main functions of EU are:

 Decoding of Instructions

 Execution of instructions

 Steps:

 EU extracts instructions from top of queue in BIU

 Decode the instructions

 Generates operands if necessary
 Passes operands to BIU & requests it to perform read or write bus cycles

to memory or I/O

 Perform the operation specified by the instruction on operands
 Or

 Execution unit gives instructions to BIU stating from where to fetch the data
and then decode and execute those instructions. Its function is to control
operations on data using the instruction decoder & ALU. EU has no direct
connection with system buses as shown in the above figure, it performs
operations over data through BIU.

 Bus Interface Unit (BIU):

 The BIU sends out addresses, fetches instructions from memory, reads data
from ports and memory, and writes data to ports and memory.

 In simple words, the BIU handles all transfers of data and addresses on the
buses for the execution unit.

 Or

 BIU takes care of all data and addresses transfers on the buses for the EU like
sending addresses, fetching instructions from the memory, reading data from
the ports and the memory as well as writing data to the ports and the memory.

 EU has no direction connection with System Buses so this is possible with the
BIU. EU and BIU are connected with the Internal Bus.

 8086 HAS PIPELINING ARCHITECTURE:

 While the EU is decoding an instruction or executing an instruction, which

does not require use of the buses, the BIU fetches up to six instruction bytes

for the following instructions.

 The BIU stores these pre-fetched bytes in a first-in-first-out register set called
a queue.

 When the EU is ready for its next instruction from the queue in the BIU. This is

much faster than sending out an address to the system memory and waiting

for memory to send back the next instruction byte or bytes.

 Except in the case of JMP and CALL instructions, where the queue must be

dumped and then reloaded starting from a new address, this pre-fetch and

queue scheme greatly speeds up processing.

 Fetching the next instruction while the current instruction executes is called
pipelining.

5.5 PIN DIAGRAM OF 8086:

 Intel 8086 is a 16-bit HMOS microprocessor. It is available in 40 pin DIP
chip. It uses a 5V DC supply for its operation. The 8086 uses 20-line address bus.
It has a 16-line data bus. The 20 lines of the address bus operate in multiplexed
mode. The 16-low order address bus lines have been multiplexed with data and
4 high-order address bus lines have been multiplexed with status signals.

AD0-AD15:
Address/Data bus. These are low order address bus. They are multiplexed with
data. When AD lines are used to transmit memory address the symbol A is used
instead of AD, for example A0-A15. When data are transmitted over AD lines the
symbol D is used in place of AD, for example D0-D7, D8-D15 or D0-D15.

A16-A19:
High order address bus. These are multiplexed with status signals.

S2, S1, S0:
Status pins. These pins are active during T4, T1 and T2 states and is returned to
passive state (1, 1, 1 during T3 or Tw (when ready is inactive). These are used
by the 8288 bus controller for generating all the memory and I/O operation)
access control signals. Any change in S2, S1, and S0 during T4 indicates the
beginning of a bus cycle.

S2 S1 S0 Characteristics

0 0 0 Interrupt
acknowledge

0 0 1 Read I/O port

0 1 0 Write I/O port

0 1 1 Halt

1 0 0 Code access1 0
1 Read memory

1 1 0 Write memory

1 1 1 Passive State

A16/S3, A17/S4, A18/S5, A19/S6:

 The specified address lines are multiplexed with corresponding status signals.

 These are the 4 address/status buses. During the first clock cycle, it carries 4-
bit address and later it carries status signals.

BHE’/S7:

 Bus High Enable/Status. During T1 it is low. It is used to enable data onto the
most significant half of data bus, D8-D15.

 8-bit device connected to upper half of the data bus use BHE (Active Low)
signal.

 It is multiplexed with status signal S7.

 S7 signal is available during T2, T3 and T4.

RD’:
This is used for read operation. It is an output signal. It is active when low.

READY:
This is the acknowledgement from the memory or slow device that they have
completed the data transfer. The signal made available by the devices is
synchronized by the 8284A clock generator to provide ready input to the
microprocessor. The signal is active high (1).

INTR:
Interrupt Request. This is triggered input. This is sampled during the last clock
cycles of each instruction for determining the availability of the request. If any
interrupt request is found pending, the processor enters the interrupt
acknowledge cycle. This can be internally masked after resulting the interrupt
enable flag. This signal is active high (1) and has been synchronized internally.

NMI:
Non maskable interrupt. This is an edge triggered input which results in a type
II interrupt. A subroutine is then vectored through an interrupt vector lookup
table which is located in the system memory. NMI is non-maskable internally by
software. A transition made from low (0) to high (1) initiates the interrupt at
the end of the current instruction. This input has been synchronized internally.

INTA:
Interrupt acknowledge. It is active low (0) during T2, T3 and Tw of each
interrupt acknowledge cycle.

MN/MX’:
Minimum/Maximum. This pin signal indicates what mode the processor will
operate in.

RQ’/GT1′, RQ’/GT0′:
These are the Request/Grant signals used by the other processors requesting
the CPU to release the system bus. When the signal is received by CPU, then it
sends acknowledgment. RQ/GT0 has a higher priority than RQ/GT1.

LOCK’:

 It’s an active low pin. It indicates that other system bus masters have not
been allowed to gain control of the system bus while LOCK’ is active low
(0). The LOCK signal will be active until the completion of the next
instruction.

 When this signal is active, it indicates to the other processors not to ask the
CPU to leave the system bus. It is activated using the LOCK prefix on any
instruction

RESET:
This pin requires the microprocessor to terminate its present activity
immediately. The signal must be active high (1) for at least four clock cycles.

TEST’:
This examined by a ‘WAIT’ instruction. If the TEST pin goes low (0), execution
will continue, else the processor remains in an idle state. The input is
internally synchronized during each of the clock cycle on leading edge of the
clock.

 CLK:
 Clock Input. The clock input provides the basic timing for processing

operation and bus control activity. It’s an asymmetric square wave with a
33% duty cycle.

Vcc:
Power Supply (+5V D.C.)

GND:
Ground

QS1, QS0:
Queue Status. These signals indicate the status of the internal 8086 instruction
queue according to the table shown below

QS0 QS1 Status

0 0 No operation

0 1 First byte of opcode from the
queue

1 0 Empty the queue

1 1 Subsequent byte from the queue

DT/R:
Data Transmit/Receive. This pin is required in minimum systems that want to
use an 8286 or 8287 data bus transceiver. The direction of data flow is
controlled through the transceiver.

DEN:
 Data enable. This pin is provided as an output enable for the 8286/8287 in a
minimum system which uses transceiver. DEN is active low (0) during each
memory and input-output access and for INTA cycles.

HOLD/HOLDA:
HOLD indicates that another master has been requesting a local bus .This is an
active high (1). The microprocessor receiving the HOLD request will issue
HLDA (high) as an acknowledgement in the middle of a T4 or T1 clock cycle.

ALE:
Address Latch Enable. ALE is provided by the microprocessor to latch the
address into the 8282 or 8283 address latch. It is an active high (1) pulse
during T1 of any bus cycle. ALE signal is never floated, is always integer.

 5.6 GENERAL BUS OPERATION OF 8086:

 The 8086 has a combined address and data bus commonly referred as a time
multiplexed address and data bus.

 The main reason behind multiplexing address and data over the same pins is the
maximum utilization of processor pins and it facilitates the use of 40 pin standard
DIP package.

 The bus can be de multiplexed using a few latches and transceivers, whenever
required.

 Basically, all the processor bus cycles consist of at least four clock cycles. These are
referred to as T1, T2, T3, and T4. The address is transmitted by the processor
during T1. It is present on the bus only for one cycle.

 The negative edge of this ALE pulse is used to separate the address and the data or

status information. In maximum mode, the status lines S0, S1 and S2 are used to
indicate the type of operation.

 Status bits S3 to S7 are multiplexed with higher order address bits and the BHE
signal. Address is valid during T1 while status bits S3 to S7 are valid during T2
through T4.

Maximum mode

 In the maximum mode, the 8086 is operated by strapping the MN/MX pin to
ground.

 In this mode, the processor derives the status signal S2, S1, S0. Another chip called
bus controller derives the control signal using this status information.

 In the maximum mode, there may be more than one microprocessor in the system
configuration.

Minimum mode
 In a minimum mode 8086 system, the microprocessor 8086 is operated in

minimum mode by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip
itself.

 There is a single microprocessor in the minimum mode system.

5.7 8086 MEMORY ORGANIZATION:
 Segmented Memory Two types of memory organization are used:

 Linear addressing where the entire memory is available to the processor at all the

times (Motorola 68000 family).

 Segmented addressing where the memory space is divided into several segments

and the processor is limited to access program instructions and data in specific

segments.

 8086 Memory Organization Each memory location 8086 is a byte while the 8086

is a 16-bits microprocessor.

Memory Segmentation:

 The memory in an 8086 based system is organized as segmented memory.

 The CPU 8086 is able to access 1MB of physical memory. The complete 1MB of

memory can be divided into 16 segments, each of 64KB size and is addressed by

one of the segment register.

 The 16-bit contents of the segment register actually point to the starting location of

a particular segment. The address of the segments may be assigned as 0000H to

F000h respectively.

 To address a specific memory location within a segment, we need an offset address.

The offset address values are from 0000H to FFFFH so that the physical addresses

range from 00000H to FFFFFH.

Advantages of the segmented memory scheme are as follows:

 Allows the memory capacity to be 1MB although the actual addresses to be handled are of
16-bit size.

 Allows the placing of code, data and stack portions of the same program in different

parts (segments) of memory, for data and code protection.

 Permits a program and/or its data to be put into different areas of memory each

time the program is executed, i.e., provision for relocation is done.

Overlapping and Non-overlapping Memory segments:

 In the overlapping area locations physical address = CS1+IP1 = CS2+IP2. Where ‘+’

indicates the procedure of physical address formation.

5.8 MINIMUM MODE & TIMINGS:

Minimum Mode 8086 System:

 The microprocessor 8086 is operated in minimum mode by strapping its MN/MX

pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip itself.

There is a single microprocessor in the minimum mode system.

 The remaining components in the system are latches, transreceivers, clock

generator, memory and I/O devices.

 Some type of chip selection logic may be required for selecting memory or I/O

devices, depending upon the address map of the system

 Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They

are used for separating the valid address from the multiplexed address/data

signals and are controlled by the ALE signal generated by 8086.

 Minimum Mode Configuration for 8086

 Since it has 20 address lines and 16 data lines, the 8086 CPU requires three octal

address latches and two octal data buffers for the complete address and data

separation.

 Transceivers are the bidirectional buffers and sometimes they are called as data

amplifiers. They are required to separate the valid data from the time multiplexed

address/data signal.

 They are controlled by two signals, namely, DEN’ and DT/R’. The DEN’ signal

indicates that the valid data is available on the data bus, while DT/R’ indicates the

direction of data, i.e. from or to the processor.

 The system contains memory for the monitor and users program storage. Usually,

EPROMS are used for monitor storage, while RAMs for users program storage.

 A system may contain I/O devices for communication with the processor as well as

some special purpose I/O devices.

 The clock generator generates the clock from the crystal oscillator and then shapes

it and divides to make it more precise so that it can be used as an accurate timing

reference for the system.

 The clock generator also synchronizes some external signals with the system clock.

 The working of the minimum mode configuration system can be better described

in terms of the timing diagrams rather than qualitatively describing the operations.

 The opcode fetch and read cycles are similar. Hence the timing diagram can be

categorized in two parts, the first is the timing diagram for read cycle and the second is

the timing diagram for write cycle.

Timing Diagrams:

 Timing diagram is graphical representation of the operations of microprocessor

with respect to the time.

 State: one cycle of the clock is called state.

 Machine cycle: The basic microprocessor operation such as reading a byte from

memory or writing a byte to a port is called machine cycle and made up of more

than one state.

 Instruction cycle: The time required for microprocessor to fetch and execute an

entire instruction is called Instruction cycle and made up of more than one

machine cycle.

Note: An instruction cycle is made up of machine cycles, and a machine cycle is

made up of states. The time for a state is determined by the frequency of the

clock signal.

Read cycle timing diagram for Minimum mode:

 The best way to analyze a timing diagram such as the one to think of time as a

vertical line moving from left to right across the diagram.

 The read cycle begins in T1 with the assertion of the address latch enable (ALE)
signal and also M/IO’ signal.

 During the negative going edge of this signal, the valid address is latched on the local

bus. The BHE’ and A0 signals address low, high or both bytes.

 From T1 to T4, the M/IO’ signal indicate a memory or I/O operation. At T2, the

address is removed from the local bus and is sent to the output. The bus is then

tristated. The read (RD’) control signal is also activated in T2.

 The read (RD’) signal causes the addressed device to enable its data bus driver. After

goes low, the valid data is available on the data bus. The addressed device will drive

the READY line high. When the processor returns the read signal to high level, the

addressed device will again tristate its bus drivers.

 Write cycle timing diagram for Minimum mode:

 A write cycle also begins with the assertion of ALE and the emission of the address.

The M/IO’ signal is again asserted to indicate a memory or I/O operation.

 In T2, after sending the address in T1, the processor sends the data to be written to

the addressed location. The data remains on the bus until middle of T4 state. The

WR’ becomes active at the beginning of T2 (unlike RD’ is somewhat delayed in T2 to

provide time for floating).

 The BHE’ and A0 signals are used to select the proper byte or bytes of memory or

I/O word to be read or written.

 The M/IO’, RD’ and WR’ signals indicate the types of data transfer as specified in
Table.

5.9 MAXIMUM MODE &TIMINGS

 In the maximum mode, the 8086 is operated by strapping the MN/MX’ pin to

ground. In this mode, the processor derives the status signals S2’, S1’ and S0’.

Another chip called bus controller derives the control signals using this status

information.

 In the maximum mode, there may be more than one microprocessor in the system

configuration. The other components in the system are the same as in the minimum

mode system. The general system organization is as shown in the below figure. The

basic functions of the bus controller chip IC8288, is to derive control signals like RD’

and WR’ (for memory and I/O devices), DEN, DT/R’, ALE, etc. using the information

made available by the processor on the status lines.

 The bus controller chip has input lines S2’, S1’ and S0’ and CLK. These inputs to 8288

are driven by the CPU. It derives the outputs ALE, DEN, DT/R’, MWTC’, MRDC’, IORC’,

IOWC’ and INTA’.

 INTA’ pin is used to issue two interrupt acknowledge pulses to the interrupt

controller or to an interrupting device.

 IORC*, IOWC* are I/O read command and I/O write command signals

respectively. These signals enable an IO interface to read or write the data from or

to the addressed port. The MRDC*, MWTC* are memory read command and memory

write command signals respectively and may be used as memory read and write

signals. All these command signals instruct the memory to accept or send data from

or to the bus.

 The maximum mode system timing diagrams are also divided in two portions as

read (input) and write (output) timing diagrams. The address/data and

address/status timings are similar to the minimum mode. ALE is asserted in T1,

just like minimum mode. The only difference lies in the status signals used and the

available control and advanced command signals.

 Read cycle timing diagram for Maximum mode:

 Write cycle timing diagram for Maximum mode:

5.10 INTERRUPTS:

Definition:
The meaning of „interrupts‟ is to break the sequence of operation. While the CPU
is executing a program, on „interrupt‟ breaks the normal sequence of execution
of instructions, diverts its execution to some other program called Interrupt
Service Routine (ISR).After executing ISR , the control is transferred back again
to the main program. Interrupt processing is an alternative to polling.
 Or

Interrupt is the method of creating a temporary halt during program execution
and allows peripheral devices to access the microprocessor. The microprocessor
responds to that interrupt with an ISR (Interrupt Service Routine), which is a
short program to instruct the microprocessor on how to handle the interrupt.

The following image shows the types of interrupts we have in a 8086
microprocessor −

Need for Interrupt:
Interrupts are particularly useful when interfacing I/O devices that provide or
require data at relatively low data transfer rate.

Types of Interrupts:
There are two types of Interrupts in 8086.
1. Hardware Interrupts

2. Software Interrupts

HARDWARE INTERRUPTS:

 Hardware interrupt is caused by any peripheral device by sending a signal
through a specified pin to the microprocessor.

 The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-
maskable interrupt and INTR is a maskable interrupt having lower priority.
One more interrupt pin associated is INTA called interrupt acknowledge.

NMI (non-maskable):

It is a single non-maskable interrupt pin (NMI) having higher priority than the
maskable interrupt request pin (INTR) and it is of type 2 interrupt.

When this interrupt is activated, these actions take place: −

 Completes the current instruction that is in progress.

 Pushes the Flag register values on to the stack.

 Pushes the CS (code segment) value and IP (instruction pointer) value of the
return address on to the stack.

 IP is loaded from the contents of the word location 00008H.

 CS is loaded from the contents of the next word location 0000AH.

 Interrupt flag and trap flag are reset to 0.

INTR (Maskable):

 The INTR is a maskable interrupt because the microprocessor will be
interrupted only if interrupts are enabled using set interrupt flag instruction.
It should not be enabled using clear interrupt Flag instruction.

 The INTR interrupt is activated by an I/O port. If the interrupt is enabled and
NMI is disabled, then the microprocessor first completes the current execution
and sends ‘0’ on INTA pin twice. The first ‘0’ means INTA informs the external
device to get ready and during the second ‘0’ the microprocessor receives the
8 bit, say X, from the programmable interrupt controller.

These actions are taken by the microprocessor: −

 First completes the current instruction.

 Activates INTA output and receives the interrupt type, say X.

 Flag register value, CS value of the return address and IP value of the return
address are pushed on to the stack.

 IP value is loaded from the contents of word location X × 4

 CS is loaded from the contents of the next word location.

 Interrupt flag and trap flag is reset to 0

SOFTWARE INTERRUPTS:

 Some instructions are inserted at the desired position into the program to
create interrupts. These interrupt instructions can be used to test the working
of various interrupt handlers. It includes: −

INT- Interrupt instruction with type number

 It is 2-byte instruction. First byte provides the op-code and the second byte
provides the interrupt type number. There are 256 interrupt types under
this group.

Its execution includes the following steps: −

 Flag register value is pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed
on to the stack.

 IP is loaded from the contents of the word location ‘type number’ × 4

 CS is loaded from the contents of the next word location.

 Interrupt Flag and Trap Flag are reset to 0

 The starting address for type0 interrupt is 000000H, for type1 interrupt is
00004H similarly for type2 is 00008H and ……so on. The first five pointers
are dedicated interrupt pointers. i.e. −

 TYPE 0 interrupt represents division by zero situation.

 TYPE 1 interrupt represents single-step execution during the debugging of
a program.

 TYPE 2 interrupt represents non-maskable NMI interrupt.

 TYPE 3 interrupt represents break-point interrupt.

 TYPE 4 interrupt represents overflow interrupt.

 The interrupts from Type 5 to Type 31 are reserved for other advanced
microprocessors, and interrupts from 32 to Type 255 are available for
hardware and software interrupts.

INT 3-Break Point Interrupt Instruction

 It is a 1-byte instruction having op-code is CCH. These instructions are
inserted into the program so that when the processor reaches there, then it

stops the normal execution of program and follows the break-point
procedure.

Its execution includes the following steps: −

 Flag register value is pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed
on to the stack.

 IP is loaded from the contents of the word location 3×4 = 0000CH

 CS is loaded from the contents of the next word location.

 Interrupt Flag and Trap Flag are reset to 0

INTO - Interrupt on overflow instruction

 It is a 1-byte instruction and their mnemonic INTO. The op-code for this
instruction is CEH. As the name suggests it is a conditional interrupt
instruction, i.e. it is active only when the overflow flag is set to 1 and
branches to the interrupt handler whose interrupt type number is 4. If the
overflow flag is reset then, the execution continues to the next instruction.

 Its execution includes the following steps: −

 Flag register values are pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed
on to the stack.

 IP is loaded from the contents of word location 4×4 = 00010H

 CS is loaded from the contents of the next word location.

 Interrupt flag and Trap flag are reset to 0

5.11 ADDRESSING MODES:

 The way of specifying data to be operated by an instruction is known

as addressing modes. This specifies that the given data is an immediate data

or an address. It also specifies whether the given operand is register or

register pair.

1. Immediate addressing mode:

 The addressing mode in which the data operand is a part of the instruction
itself is known as immediate addressing mode.

 Example

2. Register mode:

 In this type of addressing mode both the operands are registers.
 Or

 It means that the register is the source of an operand for an instruction.

 Example:
 MOV CX, AX ; copies the contents of the 16-bit AX register into
 the 16-bit CX register
 ADD BX, AX

3. Displacement or direct mode:

 In this type of addressing mode the effective address is directly given in the
instruction as displacement.

 Example:
 MOV AX, [DISP]
 MOV AX, [0500]

4. Register indirect addressing mode:

 This addressing mode allows data to be addressed at any memory location
through an offset address held in any of the following registers: BP, BX, DI &
SI.

 Example
 MOV AX, [BX] ; Suppose the register BX contains 4895H, then the

contents 4895H are moved to AX

 ADD CX, [BX]

 ADD AL, [BX]

5. Based addressing mode:

 In this addressing mode, the offset address of the operand is given by the
sum of contents of the BX/BP registers and 8-bit/16-bit displacement.

 Example:
 MOV DX,[BX+04]
 ADD CL, [BX+08]

6. Indexed addressing mode:

 In this addressing mode, the operands offset address is found by adding the
contents of SI (Index register) or DI (displacement) register and 8-bit/16-
bit displacements.

Example:
 MOV BX, [SI+16]
 ADD AL, [DI+16]

7. Based-index addressing mode:

 In this addressing mode, the offset address of the operand is computed by
summing the base register (BX or BP) to the contents of an Index register (SI
or DI).

 Offset= [BX or BP]+[SI or DI]

 BX is used as a base register for data segment, and BP is used as a base
register for stack segment.

 Example:
 ADD AX, [BX+SI]
 MOV CX,[BX+SI]
 MOV AX,[AX+DI]
8. Based indexed with displacement mode:

 In this type of addressing mode the effective address is the sum of index

register, base register and displacement.

 Offset= [BX+BP] + [SI or DI] +8-bit or 16-bit displacement.

 Example:

 MOV AX, [BX+SI+05] an example of 8-bit displacement.

 MOV AX, [BX+SI+1235H] an example of 16-bit displacement.

 MOV AL, [SI+BP+2000]

 5.12 INSTRUNCTION SET:

The 8086 instructions are categorized into the following main types

 Data transfer instructions

 Arithmetic instructions

 Program control transfer instructions

 Machine control instructions

 Shift/rotate instructions

 Flag manipulation instructions

 String instructions

1. DATA COPY /TRANSFER INSTRUCTIONS:
 These type of instructions are used to transfer data from source operand to

destination operand. All the store, load, move, exchange input and output
instructions belong to this category.

MOV instruction

 It is a general purpose instruction to transfer byte or word from register to
register, memory to register, register to memory or with immediate addressing

 MOV destination, source

 Here the source and destination needs to be of the same size that is both 8-bit
and both 16-bit.

 MOV instruction does not affect any flags.

MOV BX, 00F2H ; load the immediate number 00F2H in
BX Register

MOV CL, [2000H] ; Copy the 8 bit content of the memory
Location, at a displacement of 2000H
from data segment base to the CL
register

MOV [589H], BX ; Copy the 16 bit content of BX register
on to the memory location, which at a
displacement of 589H from the data
segment base.

MOV DS, CX ;
Move the content of CX to DS

PUSH instruction:

 The PUSH instruction decrements the stack pointer by two and copies the
word from source to the location where stack pointer now points. Here the
source must of word size data. Source can be a general purpose register,
segment register or a memory location.

 The PUSH instruction first pushes the most significant byte to sp-1, then the
least significant to the sp-2.

 Push instruction does not affect any flags.

 Example:-
 PUSH CX ; Decrements SP by 2, copy content of CX to the stack (figure

shows execution of this instruction)

 PUSH DS ; Decrement SP by 2 and copy DS to stack

POP instruction:

 The POP instruction copies a word from the stack location pointed by the stack
pointer to the destination. The destination can be a General purpose register, a
segment register or a memory location. Here after the content is copied the stack
pointer is automatically incremented by two.

 The execution pattern is similar to that of the PUSH instruction.

 Example:

 POP CX; Copy a word from the top of the stack to CX and increment SP by 2.

IN & OUT instructions

The IN instruction will copy data from a port to the accumulator. If 8 bit is read
the data will go to AL and if 16 bit then to AX. Similarly OUT instruction is used to

copy data from accumulator to an output port.

Both IN and OUT instructions can be done using direct and indirect addressing
modes.

 Example:

 IN AL, 0F8H

;

Copy a byte from the port 0F8H to
AL

 MOV DX, 30F8H ; Copy port address in DX

 IN AL, DX ; Move 8 bit data from 30F8H port

 IN AX, DX ; Move 16 bit data from 30F8H port

 OUT 047H, AL ; Copy contents of AL to 8 bit port
047H

 MOV DX, 330F8H ; Copy port address in DX

 OUT DX, AL ; Move 8 bit data to the 30F8H port

 OUT DX, AX ; Move 16 bit data to the 30F8H port

XCHG instruction

 The XCHG instruction exchanges contents of the destination and source. Here
destination and source can be register and register or register and memory
location, but XCHG cannot interchange the value of 2 memory locations.

 XCHG Destination, Source

 Example:

 XCHG BX, CX

;

exchange word in CX with the word in
BX

 XCHG AL, CL ; exchange byte in CL with the byte in
AL

 XCHG AX, SUM[BX]

; Here physical address, which is DS
+SUM+ [BX]. The content at physical
address and the content of AX are
interchanged

2. Arithmetic and Logical instructions:
All the instructions performing arithmetic, logical, increment, decrement,
compare and ASCII instructions belong to this category.

ADD instruction:

 Add instruction is used to add the current contents of destination with that of
source and store the result in destination. Here we can use register and/or
memory locations.

 AF, CF, OF, PF, SF, and ZF flags are affected.

 ADD Destination, Source

 Example:
o ADD AL, 0FH ; Add the immediate content, 0FH to the content of

AL and store the result in AL
o ADD AX, BX ; AX <= AX+BX

o ADD AX,0100H – IMMEDIATE

o ADD AX,BX – REGISTER

o ADD AX,[SI] – REGISTER INDIRECT OR INDEXED

o ADD AX, [5000H] – DIRECT

o ADD [5000H], 0100H – IMMEDIATE

o ADD 0100H – DESTINATION AX (IMPLICT)

 ADC: ADD WITH CARRY

 This instruction performs the same operation as ADD instruction, but adds
the carry flag bit (which may be set as a result of the previous calculation) to the
result. All the condition code flags are affected by this instruction. The examples
of this instruction along with the modes are as follows:

Example:

o ADC AX,BX – REGISTER

o ADC AX,[SI] – REGISTER INDIRECT OR INDEXED

o ADC AX, [5000H] – DIRECT

o ADC [5000H], 0100H – IMMEDIATE

o ADC 0100H – IMMEDIATE (AX IMPLICT)

SUB instruction:

 SUB instruction is used to subtract the current contents of destination
with that of source and store the result in destination. Here we can use
register and/or memory locations. AF, CF, OF, PF, SF, and ZF flags are
affected

 SUB Destination, Source

 Example:

o SUB AL, 0FH ; subtract the immediate content, 0FH from the content
of AL and store the result in AL

o SUB AX, BX ; AX <= AX-BX

o SUB AX,0100H – IMMEDIATE (DESTINATION AX)

o SUB AX,BX – REGISTER

o SUB AX,[5000H] – DIRECT

o SUB [5000H], 0100H – IMMEDIATE

SBB: SUBTRACT WITH BORROW:

 To subtract with borrow instruction subtracts the source operand and the
borrow flag (CF) which may reflect the result of the previous calculations,
from the destination operand. Subtraction with borrow, here means
subtracting 1 from the subtraction obtained by SUB, if carry (borrow) flag is
set.

 The result is stored in the destination operand. All the flags are affected
(condition code) by this instruction. The examples of this instruction are as
follows:

 Example:

 SBB AX, 0100H – IMMEDIATE (DESTINATION AX)

 SBB AX, BX – REGISTER

 SBB AX,[5000H] – DIRECT

 SBB [5000H], 0100H – IMMEDIATE

CMP: COMPARE:
 The instruction compares the source operand, which may be a register

or an immediate data or a memory location, with a destination operand
that may be a register or a memory location.

 For comparison, it subtracts the source operand from the destination
operand but does not store the result anywhere. The flags are affected
depending upon the result of the subtraction.

 If both of the operands are equal, zero flag is set. If the source operand is
greater than the destination operand, carry flag is set or else, carry flag
is reset. The examples of this instruction are as follows:

 Example:

 CMP BX, 0100H – IMMEDIATE

 CMP AX, 0100H – IMMEDIATE

 CMP [5000H], 0100H – DIRECT

 CMP BX,[SI] – REGISTER INDIRECT OR INDEXED

 CMP BX, CX – REGISTER

 INC & DEC instructions:

1. INC and DEC instructions are used to increment and decrement the
content of the specified destination by one. AF, CF, OF, PF, SF, and ZF
flags are affected.

2. Example:

INC AL ; ALAL + 1

INC AX ; AXAX + 1

DEC AL ; AL AL – 1

DEC AX ; AXAX – 1

AND instruction:

 This instruction logically ANDs each bit of the source byte/word with the
corresponding bit in the destination and stores the result in destination. The
source can be an immediate number, register or memory location, register can
be a register or memory location.

 The CF and OF flags are both made zero, PF, ZF, SF are affected by the
operation and AF is undefined.

 AND Destination, Source

 Example:

 AND BL, AL; suppose BL=1000 0110 and AL = 1100 1010 then after the
operation BL would be BL= 1000 0010.

 AND CX, AX; CX  CX AND AX

 AND CL, 08; CL CL AND (0000 1000)

OR instruction:

 This instruction logically ORs each bit of the source byte/word with the
corresponding bit in the destination and stores the result in destination. The
source can be an immediate number, register or memory location, register can
be a register or memory location.

 The CF and OF flags are both made zero, PF, ZF, SF are affected by the
operation and AF is undefined.

 OR Destination, Source

 Example:

 OR BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then after the
operation BL would be BL= 1100 1110.

 OR CX, AX ; CXAX AND AX

 OR CL, 08 ; CLCL AND (0000 1000)

NOT instruction:

 The NOT instruction complements (inverts) the contents of an operand
register or a memory location, bit by bit. The examples are as follows:

1. Example:
2. NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX=

(0100)2= (4)16).
3. NOT [5000H]

XOR instruction:

 The XOR operation is again carried out in a similar way to the AND and OR

operation. The constraints on the operands are also similar. The XOR
operation gives a high output, when the 2 input bits are dissimilar. Otherwise,
the output is zero. The example instructions are as follows:

 Example:

 XOR AX, 0098H

 XOR AX, BX

 XOR AX, [5000H]

3. Shift / Rotate Instructions:
1) Shift instructions move the binary data to the left or right by shifting them within

the register or memory location. They also can perform multiplication of powers of
2+n and division of powers of 2-n.

2) There are two type of shifts logical shifting and arithmetic shifting, later is used with
signed numbers while former with unsigned.

SHL/SAL instruction:

 Both the instruction shifts each bit to left, and places the MSB in CF and LSB is made
0. The destination can be of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the count.

 All flags are affected.
 SAL/SHL destination, count

Example:

MOV BL, B7H

;

BL is made B7H

SAL BL, 1 ; Shift the content of BL register one place to
left.

Before Execution,

CY B7 B6 B5 B4 B3 B2 B1 B0

0 1 0 1 1 0 1 1 1

After Execution,

CY B7 B6 B5 B4 B3 B2 B1 B0

1 0 1 1 0 1 1 1 0

SHR instruction:

 This instruction shifts each bit in the specified destination to the right and 0

is stored in the MSB position. The LSB is shifted into the carry flag. The
destination can be of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the count.

 All flags are affected
 Before

execution,
B7 B6 B5 B4 B3 B2 B1 B0

CY 1 0 1 1 0 1 1 1 0

 After execution,

B7 B6 B5 B4 B3 B 2 B1 B0 CY

0 1 0 1 1 0 1 1 1

ROL instruction:

 This instruction rotates all the bits in a specified byte or word to the left
some number of bit positions. MSB is placed as a new LSB and a new CF. The
destination can be of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the count.

 All flags are affected

 ROL destination, count

Example:

 MOV BL, B7H ; BL is made B7H

 ROL BL, 1 ; rotates the content of BL register one place to the left.

 Before Execution:

CY

B7

B
6

 B B5

B
4

B
3

B
2

B1

B
0

0 1 0 1 1 0 1 1 1

 After the execution,

 CY B7 B6 B5 B4 B3 B2 B1 B0

 1 0 1 1 0 1 1 1 1

ROR instruction:

 This instruction rotates all the bits in a specified byte or word to the right

some number of bit positions. LSB is placed as a new MSB and a new CF. The
destination can be of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the count.

 All flags are affected.

 ROR destination, count

 Example:
MOV BL, B7H ; BL is made B7H

 ROR BL, 1 ; shift the content of BL register one place to the right.

 Before execution,

B7 B6 B5 B4 B3 B2 B1 B0 CY

1 0 1 1 0 1 1 1 0

 After execution,
B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 1 0 1 1 0 1 1 1

 RCR instruction

 This instruction rotates all the bits in a specified byte or word to the right some
number of bit positions along with the carry flag. LSB is placed in a new CF
and previous carry is placed in the new MSB. The destination can be of byte
size or of word size, also it can be a register or a memory location. Number
of shifts is indicated by the count.

 All flags are affected

 General Format: RCR destination, count

 Example:

 MOV BL, B7H ; BL is made B7H

 RCR BL, 1 ; shift the content of BL register one place to the
right.

 Before execution,

B7 B6 B5 B4 B3 B2 B1
 B0 CY 1 0 1 1 0 1 1
 1 0

 After execution,

B7 B6 B5 B4 B3 B2 B1

 B0 CY 0 1 0 1 1 0 1

 1 1

4. PROGRAM CONTROL TRANSFER INSTRUCTIONS:
 These instructions transfer control of execution to the specified address.

All the call, jump, interrupt and return instruction belong to this class.
 There are 2 types of such instructions.

1. Unconditional transfer instructions – CALL, RET, JMP
2. Conditional transfer instructions – J condition

CALL instruction:
 The CALL instruction is used to transfer execution to a subprogram or

procedure. There are two types of CALL instructions, near and far.

 A near CALL is a call to a procedure which is in the same code segment as the
CALL instruction. 8086 when encountered a near call, it decrements the SP by 2
and copies the offset of the next instruction after the CALL on the stack. It loads
the IP with the offset of the procedure then to start the execution of the
procedure.

 A far CALL is the call to a procedure residing in a different segment. Here value
of CS and offset of the next instruction both are backed up in the stack. And
then branches to the procedure by changing the content of CS with the segment
base containing procedure and IP with the offset of the first instruction of the
procedure.

 Example:

Near call

CALL PRO ; PRO is the name of the procedure

CALL CX ; Here CX contains the offset of the first
instruction

 of the procedure, that is replaces the content
IP with the content of CX

Far call

CALL DWORD PTR [8X]; New values for CS and IP are fetched from four

 Memory locations in the DS. The new value for CS is fetched from [8X] and [8X+1],
the new IP is fetched from [8X+2] and [8X+3].

RET instruction:

 RET instruction will return execution from a procedure to the next instruction

after the CALL instruction in the calling program. If it was a near call, then IP is
replaced with the value at the top of the stack, if it had been a far call, then
another POP of the stack is required. This second popped data from the stack is

put in the CS, thus resuming the execution of the calling program.

 RET instruction does not affect any flags.

JMP INSTRUCTION:

 This is also called as unconditional jump instruction, because the

processor jumps to the specified location rather than the instruction after
the JMP instruction. Jumps can be short jumps when the target address
is in the same segment as the JMP instruction or far jumps when it is in a
different segment.

Conditional Jump (J cond)

 Conditional jumps are always short jumps in 8086. Here jump is done
only if the condition specified is true/false. If the condition is not satisfied,
then the execution proceeds in the normal way.

Iteration control instructions:

 These instructions are used to execute a series of instructions some number of
times. The number is specified in the CX register, which will be automatically
decremented in course of iteration. But here the destination address for the jump
must be in the range of -128 to 127 bytes.

Example:

LOOP : loop through the set of instructions until CX is 0
LOOPE/LOOPZ : here the set of instructions are repeated until CX=0
or ZF=0 LOOPNE/LOOPNZ: here repeated until CX=0 or ZF=1

5. MACHINE CONTROL INSTRUCTIONS:
 These instructions control the machine status. NOP, HLT, WAIT and LOCK

instructions belong to this class.

HLT instruction

 The HLT instruction will cause the 8086 microprocessor to fetching and executing
instructions.

 The 8086 will enter a halt state. The processor gets out of this Halt signal upon
an interrupt signal in INTR pin/NMI pin or a reset signal on RESET input

WAIT instruction

 When this instruction is executed, the 8086 enters into an idle state. This idle
state is continued till a high is received on the TEST input pin or a valid interrupt
signal is received. Wait affects no flags. It generally is used to synchronize the
8086 with a peripheral device(s).

ESC instruction

 This instruction is used to pass instruction to a coprocessor like 8087. There is a
6 bit instruction for the coprocessor embedded in the ESC instruction. In most
cases the 8086 treats ESC and a NOP, but in some cases the 8086 will access data
items in memory for the coprocessor

LOCK instruction

 In multiprocessor environments, the different microprocessors share a system
bus, which is needed to access external devices like disks. LOCK Instruction is
given as prefix in the case when a processor needs exclusive access of the
system bus for a particular instruction.

 It affects no flags.

 LOCK XCHG SEMAPHORE, AL : The XCHG instruction requires two

 Bus accesses.

 The lock prefix prevents another processor from taking control of the system bus
between the 2 accesses

NOP instruction

 At the end of NOP instruction, no operation is done other than the fetching and
decoding of the instruction. It takes 3 clock cycles. NOP is used to fill in time
delays or to provide space for instructions while trouble shooting. NOP affects
no flags.

6. FLAG MANIPULATION INSTRUCTIONS:
 All the instructions which directly affect the flag register come under this

group of instructions. Instructions like CLD, STD, CLI, STI etc.., belong to
this category of instructions.

 STC instruction

This instruction sets the carry flag. It does not affect any other flag.

 CLC instruction

This instruction resets the carry flag to zero. CLC does not affect any other flag.

 CMC instruction

This instruction complements the carry flag. CMC does not affect any other flag.

 STD instruction

This instruction is used to set the direction flag to one so that SI and/or DI can be
decremented automatically after execution of string instruction. STD does not
affect any other flag.

 CLD instruction

This instruction is used to reset the direction flag to zero so that SI and/or DI can
be incremented automatically after execution of string instruction. CLD does not
affect any other flag.

 STI instruction

This instruction sets the interrupt flag to 1. This enables INTR interrupt of the
8086. STI does not affect any other flag.

 CLI instruction

This instruction resets the interrupt flag to 0. Due to this the 8086 will not
respond to an interrupt signal on its INTR input. CLI does not affect any other
flag.

7. STRING MANIPULATION INSTRUCTIONS:

 These instructions involve various string manipulation operations like Load,
move, scan, compare, store etc.

 MOVS/MOVSB/MOVSW

 These instructions copy a word or byte from a location in the data segment
to a location in the extra segment. The offset of the source is in SI and that of
destination is in DI. For multiple word/byte transfers the count is stored in
the CX register.

 When direction flag is 0, SI and DI are incremented and when it is 1, SI and
DI are decremented.

 MOVS affect no flags. MOVSB is used for byte sized movements while
MOVSW is for word sized.

Example:

CLD ; clear the direction flag to auto increment SI
and DI MOV AX, 0000H;

MOV DS, AX ; initialize data segment
register to 0 MOV ES, AX ; initialize extra
segment register to 0 MOV SI, 2000H ; Load the
offset of the string1 in SI MOV DI, 2400H ; Load the
offset of the string2 in DI MOV CX, 04H ;
 load length of the string in CX

REP MOVSB ; decrement CX and MOVSB until CX will be 0

 REP/REPE/REP2/REPNE/REPNZ

 REP is used with string instruction; it repeats an instruction until the
specified condition becomes false.

Example: Comments

REP CX=0

REPE/REPZ CX=0 OR ZF=0

REPNE/REPNZ CX=0 OR ZF=1

 LODS/LODSB/LODSW

 This instruction copies a byte from a string location pointed to by SI to AL or a
word from a string location pointed to by SI to AX.LODS does not affect any flags.
LODSB copies byte and LODSW copies word.

Example:

CLD ; clear direction flag to auto increment SI MOV SI,
OFFSET S_STRING ; point SI at string
LODS S_STRING ;

 STOS/STOSB/STOSW

 The STOS instruction is used to store a byte/word contained in AL/AX to the offset
contained in the DI register. STOS does not affect any flags. After copying the
content DI is automatically incremented or decremented, based on the value of
direction flag.

Example:

 MOV DL, OFFSET D_STRING; assign DI with destination address.

 STOS D_STRING ; assembler uses string name to determine

byte or Word, if byte then AL is used and if of word size, AX is used.

5. CMPS/CMPSB/CMPSW

 CMPS is used to compare the strings, byte wise or word wise. The comparison is
affected by subtraction of content pointed by DI from that pointed by SI. The AF, CF,
OF, PF, SF and ZF flags are affected by this instruction, but neither operand is
affected.

Example: Comments

MOV SI, OFFSET
STRING_A

; Point first string

MOV DI, OFFSET
STRING_B

; Point second string

MOV CX, 0AH ; Set the counter as 0AH

CLD ; Clear direction flag to auto
increment

REPE CMPSB
; Repeatedly compare till

unequal or counter =0

5.13 ASSEMBLER DIRECTIVES AND OPERATOR:
 There are some instructions in the assembly language program which are not a

part of processor instruction set. These instructions are instructions to the
assembler, linker and loader. These are referred to as pseudo-operations or as
assembler directives. The assembler directives enable us to control the way in
which a program assembles and lists. They act during the assembly of a program
and do not generate any executable machine code.

 There are many specialized assembler directives. Let us see the commonly used
assembler directive in 8086 assembly language programming.

ASSUME:

 It is used to tell the name of the logical segment the assembler to use for a specified
segment.

 E.g.: ASSUME CS: CODE tells that the instructions for a program are in a logical
segment named CODE.

DB -Define Byte:

 The DB directive is used to reserve byte or bytes of memory locations in the
available memory. While preparing the EXE file, this directive directs the
assembler to allocate the specified number of memory bytes to the said data type
that may be a constant, variable, string, etc. Another option of this directive also
initializes the reserved memory bytes with the ASCII codes of the characters
specified as a string. The following examples show how the DB directive is used for
different purposes.
 RANKS DB 01H, 02H, 03H, 04H

This statement directs the assembler to reserve four memory locations for a
list named RANKS and initialize them with the above specified four values.

 MESSAGE DB „GOOD MORNING‟

This makes the assembler reserve the number of bytes of memory equal to
the number of characters in the string named MESSAGE and initializes those
locations by the ASCII equivalent of these characters.

 VALUE DB 50H
 This statement directs the assembler to reserve 50H memory bytes and

leave them uninitialized for the variable named VALUE.

DD:

 Define Double word - used to declare a double word type variable or to
reserve memory locations that can be accessed as double word.

E.g.: ARRAY _POINTER DD 25629261H declares a
double word named ARRAY_POINTER.

DQ -Define Quad word:

 This directive is used to direct the assembler to reserve 4 words (8 bytes) of
memory for the specified variable and may initialize it with the specified values.

DT -Define Ten Bytes:

 The DT directive directs the assembler to define the specified variable requiring
10-bytes for its storage and initialize the 10-bytes with the specified values. The
directive may be used in case of variables facing heavy numerical calculations,
generally processed by numerical processors.

DW -Define Word:

 The DW directives serves the same purposes as the DB directive, but it now
makes the assembler reserve the number of memory words (16-bit) instead of
bytes. Some examples are given to explain this directive.

 WORDS DW 1234H, 4567H, 78ABH, 045CH
 This makes the assembler reserve four words in memory (8 bytes), and

initialize the words with the specified values in the statements. During
initialization, the lower bytes are stored at the lower memory addresses,
while the upper bytes are stored at the higher addresses.

 NUMBER1 DW 1245H
 This makes the assembler reserve one word in memory.

END-End of Program:

 The END directive marks the end of an assembly language program. When the
assembler comes across this END directive, it ignores the source lines available

later on. Hence, it should be ensured that the END statement should be the last
statement in the file and should not appear in between. Also, no useful program
statement should lie in the file, after the END statement.

ENDP:

 End Procedure - Used along with the name of the procedure to indicate the
end of a procedure.

 E.g.: SQUARE_ROOT PROC: start of procedure
SQUARE_ROOT ENDP: End of procedure

ENDS-End of Segment:

 This directive marks the end of a logical segment. The logical segments are
assigned with the names using the ASSUME directive. The names appear with the
ENDS directive as prefixes to mark the end of those particular segments.
Whatever are the contents of the segments, they should appear in the program
before ENDS. Any statement appearing after ENDS will be neglected from the
segment. The structure shown below explains the fact more clearly.

EQU:
 Equate - Used to give a name to some value or symbol. Each time the assembler

finds the given name in the program, it will replace the name with the vale.

 E.g.: CORRECTION_FACTOR EQU 03H MOV
AL, CORRECTION_FACTOR

EVEN:
 Tells the assembler to increment the location counter to the next even address if

it is not already at an even address.

 Used because the processor can read even addressed data in one clock cycle

EXTRN:

 Tells the assembler that the names or labels following the directive are in some
other assembly module.

 For example if a procedure in a program module assembled at a different time
from that which contains the CALL instruction ,this directive is used to tell the
assembler that the procedure is external

GLOBAL:

 Can be used in place of a PUBLIC directive or in place of an EXTRN directive.

 It is used to make a symbol defined in one module available to other modules.
 E.g.: GLOBAL DIVISOR makes the variable DIVISOR public so that it can be

accessed from other modules.

GROUP:

 Used to tell the assembler to group the logical statements named after the
directive into one logical group segment, allowing the contents of all the segments
to be accessed from the same group segment base.

 E.g.: SMALL_SYSTEM GROUP CODE, DATA, STACK_SEG

INCLUDE:
 Used to tell the assembler to insert a block of source code from the named file into

the current source module.
 This will shorten the source code.

LABEL:
 Used to give a name to the current value in the location counter.
 This directive is followed by a term that specifies the type you want associated

with that name.
 E.g: ENTRY_POINT LABEL FAR

 NEXT: MOV AL, BL

NAME:
 Used to give a specific name to each assembly module when programs

consisting of several modules are written.
 E.g.: NAME PC_BOARD

OFFSET:
 Used to determine the offset or displacement of a named data item or

procedure from the start of the segment which contains it.
 E.g.: MOV BX, OFFSET PRICES

ORG:
 The location counter is set to 0000 when the assembler starts reading a

segment. The ORG directive allows setting a desired value at any point in
the program.

 E.g.: ORG 2000H

PROC:
 Used to identify the start of a procedure.
 E.g.:SMART_DIVIDE PROC FAR identifies the start of a procedure named

SMART_DIVIDE and tells the assembler that the procedure is far

PTR:
 Used to assign a specific type to a variable or to a label.
 E.g.: NC BYTE PTR[BX]tells the assembler that we want to increment the

byte pointed to by BX

PUBLIC:
 Used to tell the assembler that a specified name or label will be accessed

from other modules.

 E.g.: PUBLIC DIVISOR, DIVIDEND makes the two variables DIVISOR and
DIVIDEND available to other assembly modules.

SEGMENT:
 Used to indicate the start of a logical segment.
 E.g.: CODE SEGMENT indicates to the assembler the start of a logical segment

called CODE

SHORT:
 Used to tell the assembler that only a 1 byte displacement is needed to code a

jump instruction.
 E.g.: JMP SHORT NEARBY_LABEL

TYPE:
 Used to tell the assembler to determine the type of a specified variable.
 E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to increment BX to

point to the next word in an array of words.

5.14 SIMPLE ASSEMBLY LANGUAGE PROGRAMMING USING 8086 INSTRUCTIONS:

PROGRAM-1: (ADDITION)

EFFECTIVE
ADDRESS

MNEMONIC
CODES

LABLE MNEMONICS OPERANDS COMMENTS

2000 8B,06,00,17 MOV AX,[1700] Move the contents
of 1700 in register
AX

2004 8B,1E,02,17 MOV BX, [1702] Move the contents
of 1702 in register
BX

2008 01,D8 ADD AX,BX Data of AX and BX
are added and
result stored in AX

200A CC INT 3 Interrupt program

PROGRAM-2: (SUBTRACTION)

EFFECTIVE
ADDRESS

MNEMONIC
CODES

LABLE MNEMONICS OPERANDS COMMENTS

2000 8B,06,00,17 MOV AX,[1700] Move the contents
of 1700 in register
AX

2004 8B,1E,02,17 MOV BX, [1702] Move the contents
of 1702 in register
BX

2008 29,D8 SUB AX,BX Data of AX and BX
are added and
result stored in AX

200A CC INT 3 Interrupt program

PROGRAM-3: (MULTIPLICATION)

EFFECTIVE
ADDRESS

OPCODES MNEMONICS OPERANDS COMMENTS

1100 BE 00 15 MOV SI,1500 Load 1500
into SI

1103 AD LOD SW Load the
multiplicand
value

1104 89 C3 MOV BX, AX Load AX value
into BX

1106 AD LOD SW Load the
multiplier
value

1107 F7 E3 MUL BX Multiply two
data

1109 BF 0 5 15 MOV DI, 1520 Load 1520
address into
DI

110C 89 05 MOV [DI], AX Store AX value
into DI

110E 47 INC DI

110F 47 INC DI Increment the
DI

1110 89 15 MOV [DI], BX Store BX value
into DI

1112 CC INT 3 Break point

PROGRAM-4: (DIVISION)

EFFECTIVE
ADDRESS

OPCODES MNEMONICS OPERANDS COMMENTS

1100 BA 00 00 MOV DX, 0000 Clear DX registers

1103 B8 83 00 MOV AX, 0083 Load the dividend
in AX

1106 B9 00 02 MOV BX, 02 Load the divisor
value in BX

1109 F7 F1 DIV BX Divide the two
data’s

110B BF 20 15 MOV DI, 1520 Load 1520 address
into DI

110E 88 05 MOV [DI], AL Load AL value into
DI

1110 47 INC DI Increment DI

1111 88 25 MOV [DI], AH Load AH value into
DI

1113 47 INC DI Increment DI

1114 89 15 MOV [DI], DX Load DX value into
DI

1116 CC INT3 Break point

PROGRAM-5: (LARGEST NUMBER IN DATA ARRAY)

EFFECTIVE
ADDRESS

MNEMONIC
CODES

LABLE MNEMONICS OPERANDS COMMENTS

0101 B8, 00, 00 MOV AX, 0000 ;Initial value for
comparison

0104 BE, 00, 02 MOV SI, 0200 ;memory address in
SI

0107 8B, 0C MOV CX, [SI] ;count in CX
0109 46 BACK INC SI ;increment SI
010A 46 INC SI ;increment SI
010B 3B, 04 CMP AX, [SI] ;compare previous

largest number with
next number

010D 73, 02 JAE GO ;Jump if number in
AX is greater i.e. CF =
0

010F 8B, 04 MOV AX, [SI] ;save next larger
number in AX

0111 E2, F6 GO LOOP BACK ;jump to BACK until
CX become zero

0113 A3, 51, 02 MOV [0251], AX ;store largest
number in memory

0116 CC INT3 ;interrupt program

PROGRAM-6: (SMALLEST NUMBER IN DATA ARRAY)

EFFECTIVE
ADDRESS

MNEMONICS
CODES

LABEL MNEMONICS OPERANDS COMMENTS

0101 B8,FF,FF MOV AX,FFFF Initial value
for
comparison.

0104 BE,00,02 MOV SI,0200 Memory
address in
SI.

0107 8B,0C MOV CX,[SI] Count in CX

0109 46 BACK INC SI Increment SI

010A 46 INC SI Increment SI

010B 3B,04 CMP AX,[SI] Compare
previous
smallest
with next
number

010D 72,02 JB GO Jump if
number in
AX is smaller
i.e. CF=1

010F 8B,04 MOV AX,[SI] Save next
smaller

0111 E2,F6 GO LOOP BACK Jump to back
until CX
becomes
zero.

0113 A3,51,02 MOV [0251],AX Store
smallest
number in
memory

0116 CC INT 3 Interrupt
program.

Branch Instructions:
 These instructions transfer control of execution to the specified address.

All the call, jump, interrupt and return instruction belong to this class.

Loop instructions:
 These instructions can be used to implement unconditional and

conditional loops. The LOOP, LOOP NZ, LOOP Z instructions belong to this
category.

Machine control instructions:

 These instructions control the machine status. NOP, HLT, WAIT and
LOCK instructions belong to this class.

Flag manipulation instructions:

 All the instructions which directly affect the flag register come under this
group of instructions. Instructions like CLD, STD, CLI, STI etc.., belong to
this category of instructions.

Shift and Rotate instructions:

 These instructions involve the bit wise shifting or rotation in either
direction with or without a count in CX.

String manipulation instructions:

 These instructions involve various string manipulation operations like
Load, move, scan, compare, store etc..,

UNIT-6 MICROCONTROLLER (ARCHITECTURE AND PROGRAMMING-8 BIT)

6.1 DISTINGUISH BETWEEN MICROPROCESSOR & MICROCONTROLLER

 MICROPROCESSOR:

 A Microprocessor is a multipurpose, Programmable clock driven,
register based electronic device,

 That read binary instruction from a storage device called memory,
accepts binary data as input and processes data according to those
instructions and provides results as outputs.

 Microprocessor is clock driven semiconductor device which for is
manufactured by using LSI and VLSI technique.

MICROCONTROLLER:

 Microcontroller is like a mini computer with a CPU along with RAM,
ROM, serial ports, timers, and IO peripherals all embedded on a
single chip.

 It’s designed to perform application specific tasks that require a
certain degree of control such as a TV remote, LED display panel,
smart watches, vehicles, traffic light control, temperature control,
etc.

 It’s a high-end device with a microprocessor, memory, and
input/output ports all on a single chip.

 It’s the brains of a computer system which contains enough circuitry
to perform specific functions without external memory.

 Since it lacks external components, the power consumption is less
which makes it ideal for devices running on batteries.

 Simple speaking, a microcontroller is complete computer system
with less external hardware.

DIFFERENCE BETWEEN MICROPROCESSOR AND MICROCONTROLLER:

 MICROPROCESSOR MICROCONTROLLER

Microprocessor contains ALU, General
purpose registers, stack pointer,
program counter, clock timing circuit,
interrupt circuit

Microcontroller contains the circuitry of
microprocessor, and in addition it has built
in ROM, RAM, I/O Devices,
Timers/Counters etc.

It has many instructions to move data
between memory and CPU

It has few instructions to move data
between memory and CPU

Few bit handling instruction It has many bit handling instructions

Less number of pins are multifunctional More number of pins are multifunctional

Single memory map for data and
 code (program)

Separate memory map for data and code
(program)

Access time for memory and IO are
more

Less access time for built in memory and IO.

Microprocessor based system requires
additional hardware

It requires less additional hardware’s

More flexible in the design point of view Less flexible since the additional circuits
which is residing inside the microcontroller
is fixed for a particular microcontroller

Large number of instructions with
flexible addressing modes

Limited number of instruction with few
addressing modes

6.2 8 BIT & 16 BIT MICROCONTROLLER:

 8 bit Microcontroller:

 8 bit microcontroller is type of microcontroller having all traits of
microcontroller and its information gadgets are largely 8 bits big.

 8 bits big means your CPU can use 8 bit information bus or pipe and
can entry the similar dimension information by a single machine
instruction.

 For every cycle of instruction its fluctuate is zero to 255. It requires
20mA current to work. Intel 8008 was the first model having 8 bit
micro-controller.
 16 bit Microcontroller:

 16 bit microcontroller is additional superior than 8 bit
microcontroller.

 It is additional right and precise in performing mathematical and
technical duties.

 Unlike 8 bit microcontroller it makes use of 16 bits information bus
or pipe for a single instruction.

 For every cycle of instruction its bit fluctuate is extended from zero
to 65,535. As 16 bit controller is 2 time better than 8 bit controller,
it would probably work on two 16 bit numbers. It requires 10mA
current to hold out.

6.3 CISC AND RISC CPU ARCHITECTURES:

 Microcontrollers with small instruction set are called reduced

instruction set computer (RISC) machines and those with complex

instruction set are called complex instruction set computer (CISC).

 Intel 8051 is an example of CISC machine whereas microchip PIC

18F87X is an example of RISC machine.

 RISC CISC

Instruction takes one or two cycles Instruction takes multiple cycles

Only load/store instructions are used to
access memory

In additions to load and store
instructions, memory access is possible
with other instructions also.

Instructions executed by hardware Instructions executed by the micro
program

Fixed format instruction Variable format instructions

Few addressing modes Many addressing modes

Few instructions Complex instruction set

Most of the have multiple register banks Single register bank

Highly pipelined Less pipelined

Complexity is in the compiler Complexity in the microprogram

6.4 ARCHITECTURE OF 8051 MICROCONTROLLER:

Alternate diagram …

 8051 is a microcontroller. This means it has an internal
processor, internal memory and an I/O section. The architecture
of 8051 is thus divided into three main sections:

 The CPU

 Internal Memory

 I/O components.

 CPU:

 8051 has an 8 bit CPU.

 This is where all 8-bot arithmetic and logic operations are
performed.

 It has the following components.

 ALU – ARITHMETIC LOGIC UNIT:

 It performs 8-bit arithmetic and logic operations.
 It can also perform some bit operations.

 Example:

ADD A, R0 ; Adds contents of A register and R0
register and stores the result in A register.

ANL A, R0 ; Logically ANDs contents of A
register and R0 register and stores the result in A register.

CPL P0.0 ; Complements the value of P0.0 pin.

A – REGISTER (ACCUMULATOR):

 It is an 8-bit register.

 In most arithmetic and logic operations, A register hold the first
operand and also gets the result of the operation.

 Moreover, it is the only register to be used for data transfers to
and from external memory.

 Example:

ADD A, R1 ; Adds contents of A register and R1
register and stores the result in A register.

MOVX A, @DPTR ; A gets the data from External RAM

location pointed by DPTR

B – REGISTER:

 It is an 8-bit register.

 It is dedicated for Multiplication and Division.

 It can also be used in other operations.

 Example:

MUL AB; Multiplies contents of A and B registers. Stores 16-
bit result in B and A registers.

DIV AB; Divides contents of A by those of B. Stores quotient
in A and remainder in B.

 PC – PROGRAM COUNTER

 It is a 16-bit register.

 It holds address of the next instruction in program memory
(ROM).

 PC gets automatically incremented as soon as any instruction
is fetched.

 That’s what makes the program move ahead in a sequential
manner.

 In the case of a branch, a new address is loaded into PC.

DPTR – DATA POINTER

 It is a 16-bit register.

 It holds address data in data memory (RAM).

 DPTR is divided into two registers DPH (higher byte) and DPL
(lower byte).

 It is typically used by the programmer to transfer data from
External RAM.

 It can also be used as a pointer to a look up table in ROM, using
Indexed addressing mode.

 Example:
MOVX A, @DPTR ; A gets the data from External RAM

location pointed by DPTR

MOVC A, @A+DPTR ; A gets the data from ROM location

pointed by A + DPTR

SP – STACK POINTER

 It is an 8-bit register.

 It contains address of the top of stack. The Stack is present in the

Internal RAM.

 Internal RAM has 8-bit addresses from 00H… 7FH. Hence SP is an
8-bit register.

 It is affected during Push and Pop operations. During a Push, SP
gets incremented.

 During a Pop, SP gets decremented.

PSW – PROGRAM STATUS WORD

 It is an 8-bit register.

 It is also called the “Flag register”, as it mainly contains the status
flags. These flags indicate status of the current result.

 They are changed by the ALU after every arithmetic or logic

operation. The flags can also be changed by the programmer.

 PSW is a bit addressable register.
 Each bit can be individually set or reset by the programmer.

 The bits can be referred to by their bit numbers (PSW.4) or by
their name (RS1).

 Example:

SETB PSW.3 ; Makes PSW.3 1

CLR PSW.4 ; Makes PSW.40

 6.5 SIGNAL DESCRIPTION OF 8051:

 8051 has 40 pins.
The function of these pins is briefly explained as follows.

 XTAL1 & XTAL2:

 These are connected to the crystal oscillator.

 The typical operate in frequency is 12 MHz

 In Serial communication based applications, the operating
frequency is chosen to be 11.0592 MHz, in order to derive the
standard universal baud rates. This will be discussed in detail in

the further chapters.

RESET:

 It is used to reset the 8051 microcontroller. On reset PC becomes
0000H.

 This address is called the reset vector address.

 From here, 8051 executes the BIOS program also called the
Booting program or the monitor program.

 It is used to set-up the system and make it ready, to be used by
the end-user.

ALE:

 It is used to enable the latching of the address. The address and

data buses are multiplexed.

 This is done to reduce the number of pins on the 8051 IC.

 Once out of the chip, address and data have to be separated that
is called de-multiplexing.

 This is done by a latch, with the help of ALE signal. ALE is “1”
when the bus carries address and “0” when the bus carries data.

 This informs the latch, when the bus is carrying address so that
the latch captures only address and not the data.

EA’

 It decides whether the first 4 KB of program memory space

(0000H… 0FFFH) will be assigned to internal ROM or External
ROM.

 If EA = 0, the External ROM begins from 0000H.

 In this case the Internal ROM is discarded. 8051 now uses only
External ROM.

 If EA = 1, the External ROM begins from 1000H.

 In this case the Internal ROM is used. It occupies the space
0000H…0FFFH.

 In modern FLASH ROM versions, this pin also acts as VPP (12
Volt programming voltage) to write into the FLASH ROM.

PSEN’

 8051 has a 16-bit address bus (A15-A0).
This should allow 8051 to access 64 KB of external Memory as
216 = 64 KB. Interestingly though, 8051 can access 64 KB of
External ROM and 64 KB of External RAM, making a total of 128

KB.

 Both have the same address range 0000H to FFFFH.
 This does not lead to any confusion because there are separate

control signals for External RAM and External ROM.

 RD and WR are control signals for External RAM.
 PSEN is the READ signal for External ROM.

 It is called Program Status Enable as it allows reading from ROM
also known as Program Memory. Having separate control
signals for External RAM and External ROM actually allows us to
double the size of the external memory to a total of 128 KB from
the original 64 KB.

VCC & GND:

 These are power supply pins.

 8051 works at +5V / 0V power supply.

P0.0-P0.7

 These are 8 pins of Port 0.

 We can perform a byte operation (8-bit) on the whole port 0.

 We can also access every bit of port 0 individually by performing
bit operations like set, clear, complement etc.

 The bits are called P0.0… P0.7.

 Additionally, Port 0 also has an alternate function.

 It carries the multiplexed address data lines.

 A0-A7 (the lower 8 bits of address) and D0-D7 (8 bits of data) are
multiplexed into AD0-AD7.

 In any operation address and data are not issued simultaneously.
First, address is given, then data is transferred. Using a common
bus for both, reduces the number of pins.

 To identify if the bus is carrying address or data, we look at the
ALE signal. If ALE = 1, the bus carries address,

 If ALE = 0, the bus carries data.

P1.0-P1.7

 These are 8 pins of Port 1.

 We can perform a byte operation (8-bit) on the whole port 1.

 We can also access every bit of port 1 individually by performing
bit operations like set, clear, complement etc. on P1.0… P1.7.

 Port 1 also has NO alternate function

P2.0-P2.7

 These are 8 pins of Port 2.

 We can perform a byte operation (8-bit) on the whole port 2.

 We can also access every bit of port 2 individually by performing
bit operations like set, clear, complement etc. on P2.0… P2.7.

 Additionally, Port 2 also has an alternate function. It carries the
higher order address lines A8-A15.

P3.0-P3.7

 These are 8 pins of Port 3.

 We can perform a byte operation (8-bit) on the whole port 3. We
can also access every bit of port 3 individually.

 The bits are called P0.0… P0.7.

 The various pins of Port 3 have a lot of alternate functions.

P3.0 (RXD) and P3.1 (TXD):

 They are used to receive and transmit serial data.
 This forms the serial port of 8051.

P3.2 (INT0) and P3.3 (INT1):

 They are external hardware interrupts of 8051.
 If they occur simultaneously, INTO is by default higher priority.

P3.4 (T0) and P3.5 (T1):

 They are used timer clock inputs.
 They provide external clock inputs to Timer 0 and Timer 1.

P3.6 (WR) and P3.7 (R D):

 They are used as control signals for External RAM.
 8051 can access 64 KB External RAM from 0000H to FFFFH.

6.6 MEMORY ORGANISATION-RAM STRUCTURE:

 8051 operates with 4 different memories:

 Internal ROM

 External ROM

 Internal RAM

 External RAM

 Being based on Harvard Model, 8051 stores programs and data
in separate memory spaces. Programs are stored in ROM,
whereas data is stored in RAM.

 Microcontrollers are used in appliances.

 Washing machines, remote controllers, microwave ovens are
some of the

 EXAMPLES:
Here programs are generally permanent in nature and very

rarely need to be modified. Moreover, the programs must be
retained even after the device is completely switched off. Hence
programs are stored in permanent (non-volatile) memory like
ROM.

 Data on the other hand is continuously changed at runtime. For
example current temperature, cooking time etc. in an oven.

 Such data is not permanent in nature and will certainly be
modified in every usage of the device.

 Hence Data is stored in writeable memory like RAM.

 However, sometimes there is permanent data, such as ASCII
codes or 7-segment display codes. Such data is stored in ROM, in
the form of Look up tables and is accessed using a dedicated
addressing mode called Indexed Addressing mode. We will
discover this in more depth in further topics.

 We are now going to take a closer look at all four memories.

ROM ORGANIZATION / CODE MEMORY / PROGRAM MEMORY

 We can implement ROM in three different ways in 8051.

1. ONLY INTERNAL ROM:

 8051 has 4 KB internal ROM.

 In many cases this size is sufficient and there is no need for
connecting External ROM. Such systems use only Internal ROM
of 8051.

 All addresses from 0000H… 0FFFH will be accessed from
Internal ROM. Any address beyond that will be invalid.

 In such systems EA will be “1” as Internal ROM is being used.

2. INTERNAL AND EXTERNAL ROM:

 8051 has 4 KB internal ROM.

 In many cases this size is may be insufficient and we may need to
add some External ROM. Such systems use a combination of
Internal ROM and External ROM.

 The “total” ROM that can be accessed is 64 KB.
 Since we are using the Internal ROM of 4 KB, the maximum

amount of External ROM that can be connected is 60 KB.

 All addresses from 0000H… 0FFFH will be accessed from
Internal ROM. Addresses 1000H… FFFH will be accessed from
External ROM.

 In such systems EA will be “1” as Internal ROM is being used.

3. ONLY EXTERNAL ROM:

 This is the most interesting case.

 Though 8051 has 4 KB of Internal ROM, the user may choose the
discard it and connect only External ROM.

 This may happen due to several reasons.
 The program stored in the Internal ROM may have become

invalid or outdated, or the system may need to be upgraded etc.

 Such systems use only External ROM, and the Internal ROM is
discarded. Here we can connect up to 64 KB of External ROM.

 All addresses from 0000H… FFFFH will be accessed from
External ROM. But do keep in mind, that the Internal ROM is still

present in 8051.

 We need to clearly indicate to 8051 that the Internal ROM must

be ignored and every address from 0000H… FFFFH must be

accessed externally. This is indicated by us to 8051 using EA.

 By making EA = 0, we inform 8051 that the Internal ROM must

be discarded and all ROM must be accessed externally.

 Use of EA pin of 8051:

 The EA pin of 8051 decides whether the Internal ROM will
be used or not.

 If the Internal ROM has to be used we must make EA = 1.

 Now 8051 will Access the internal ROM for all addresses from
0000H to 0FFFH and will only access external ROM for
addresses 1000H and beyond.

 But if EA = 0, then the Internal ROM is completely discarded.

 Now 8051 will access the External ROM for all addresses from
0000H to FFFFH, hence discarding the internal ROM.

 8051 checks EA pin during every ROM operation where the
address is 0000H…

 0FFFH. If EA = 1, this location is accessed from internal ROM.

 If EA = 0, this location is accessed from external ROM.

 If the address is 1000H or more, 8051 does not check EA as this
location can only be present in External ROM.

 STRUCTURE OF INTERNAL RAM:

 8051 has a 128 Bytes of internal RAM. These are 128 locations of

1 Byte each.

 The address range is 00H… 7FH.
 This RAM is used for storing data.

 It is divided into three main parts: Register Banks, Bit
addressable area and a general purpose area.

REGISTER BANKS:

 The first 32 locations (Bytes) of the Internal RAM from 00H…

1FH, are used by the programmer as general purpose registers.

 Having so many general purpose registers makes programming
easier and faster.

 But as a downside, this also vastly increases the number of
opcodes (refer my class lectures for detailed understanding of
this).

 Hence the 32 registers are divided into 4 banks, each having 8
Registers R0… R7.

 The first 8 locations 00H… 07H are registers R0… R7 of bank 0.

 Similarly locations 08H… 0FH are registers R0… R7 of bank 1 and
so on. A register can be addressed using its name, or by its
address.

 E.g. Location 00H can be accessed as R0, if Bank 0 is the active
bank.
MOV A, R0; “A” register gets data from register R0.
It can also be accessed as Location 00H, irrespective of which
bank is the active bank.
MOV A, 00H; “A” register gets data from Location 00H.

 The appropriate bank is selected by the RS1, RS0 bits of PSW.
Since PSW is available to the programmer, any Bank can be
selected at run-time.

 Bank 0 is selected by default, on reset.

BIT ADDRESSABLE AREA:

 The next 16-bytes of RAM, from 20H… 2FH, is available as Bit
Addressable Area.

 We can perform ordinary byte operations on these locations, as
well as bit operations.

 As each location has 8-bits, we have a total of 16 X 8 = 128
Addressable Bits.

 These bits can be addressed using their individual address 00H
… 7FH. SETB 00H; Will store a “1” on the LSB of location 20H
 CLR 07H; Will store a “0” on the MSB of location 20H

 Normal “BYTE” operations can also be performed at the
addresses: 20H … 2FH. MOV 20H, #00H; Will store a “0” on all
8-bits of location 20H.

 Here is something very interesting to know and will also help you
understand further topics. The entire internal RAM is of 128
bytes so the address range is 00H… 7FH.

 The bit addressable area has 128 bits so its bit addresses are also
00h… 7FH.

 This means every address 00H… 7FH can have two meanings, it
could be a byte address or a bit address.

 This does not lead to any confusion, because the instruction in
which we use the address, will clearly indicate whether it is a bit
operation or a byte operations.

 SETB, CLR etc. are bit ops whereas ADD, SUB etc. are byte
operations.

 SETB 00H; this is a bit operation. It will make Bit location
00H contain a value “1”.

 MOV A, 00H; this is a byte operation. A” register will get 8-bit data
from byte location 00H.

GENERAL PURPOSE AREA

 The general-purpose area ranges from location 30H … 7FH.

 This is an 80-byte area which can be used for general data
storage.

STACK OF 8051:

 Another important element of the Internal RAM is the Stack.

 Stack is a set of memory locations operating in Last in First out

(LIFO) manner.

 It is used to store return addresses during ISRs and also used by

the programmer to store data during programs.

 In 8051, the Stack can only be present in the Internal RAM.

 This is because, SP which is an 8-bit register, can only contain an

8-bit address and External RAM has 16-bit address. (#Viva)

 On reset SP gets the value 07H.

 Thereafter SP is changed by every PUSH or POP operation in the

following manner:

PUSH: POP:

SP  SP + 1 Data [SP]

[SP]  New data SPSP – 1
 The reset value of SP is 07H because, on the first PUSH, SP gets

incremented and then data is pushed on to the stack. This means
the very first data will be stored at location 08H.

 This does not affect the default bank (0) and still gives the stack,
the maximum space to grow.

 The programmer can relocate the stack to any desired location
by simply putting a new value into SP register.

6.7 SFR (SPECIAL FUNCTION REGISTER):

 8051 has 21, 8-bit Special Function registers.

 SFRs are 8-bit registers. Each SFR has its own special function.

 They are placed inside the Microcontroller.

 They are used by the programmer to perform special functions like

controlling the timers, the serial port, the I/O ports etc.

 As SFRs are available to the programmer, we will use them in

instructions. This causes another problem. SFRs are registers after all,

and hence using them would tremendously increase the number of

opcodes to reduce the number of opcodes, SFRs are allotted addresses.

These addresses must not clash with any other addresses of the existing

memories

 Incidentally, the internal RAM is of 128 bytes and uses addresses only

from 00H… 7FH. This gives an entire range of addresses from 80H… FFH

completely unused and can be freely allotted to the SFRs.

 Hence SFRs are allotted addresses from 80H… FFH.

 It is not a co-incidence that these addresses are free. The Internal RAM

was restricted to 128 bytes instead of 256 bytes so that these addresses

are free for SFRs.

 To avoid this problem, even the bits of the SFRs are allotted addresses.

These are bit addresses, which are different from byte addresses. These bit

addresses must not clash with those of the bit addressable area of the

Internal RAM. Amazingly, even the bit addresses in the Internal RAM are

00H… 7FH (again 128 bits), keeping bit addresses 80H… FFH free to be

used by the SFR bits.

 So bit addresses 80H… FFH are allotted to the bits of various SFRs.

 Port 0 has a byte address of 80H and its bit addresses are from 80H…

87H.

 A byte operation at address 80H will affect entire Port0.

 E.g.-MOV A, P0; this refers to Byte address 80H that’s whole Port 0. 12)

A bit

 Operation at 80H will affect only P0.0.

 E.g. SETB P0.0; this refers to bit address 80H that’s Port0.0

 6.8 REGISTERS OF 8051 MICROCONTROLLER:

 In the CPU, registers are used to store information temporarily.

 That information could be a byte of data to be processed, or an

address pointing to the data to be fetched.

 The vast majority of 8051 registers are 8-bit registers.in the

8051 there is only one data type 8-bits.

 With an 8-bit data type, any data larger than 8-bits must be

broken into 8-bit chunks before it is processed.

 Since there are a larger number of registers in the 8051.

 The most widely used registers of the 8051 are A (accumulator),

B, R0, R1, R2, R3, R4, R5, R6, R7, DPTR (data pointer) and PC

(program counter).

 All of the above registers are 8-bits except DPTR and the program

counter (PC).

 The accumulator, register A is used for all arithmetic and logic

instructions.

 Types of Registers:

 The 8051 microcontroller contains mainly two types of registers:

 General purpose registers (Byte addressable registers)

 Special function registers (Bit addressable registers)

 The 8051 microcontroller consists of 256 bytes of RAM memory,

which is divided into two ways, such as 128 bytes for general

purpose and 128 bytes for special function registers (SFR) memory.

 The memory which is used for general purpose is called as RAM

memory, and the memory used for SFR contains all the peripheral

related registers like Accumulator, ‘B’ register, Timers or Counters,

and interrupt related registers.

General Purpose Registers:

https://www.elprocus.com/8051-microcontroller-architecture-and-applications/
https://www.elprocus.com/wp-content/uploads/2014/05/8051-ROM-Memory.jpg

 General Purpose Memory

 The general purpose memory is called as the RAM memory of the

8051 microcontroller, which is divided into 3 areas such as banks,

bit-addressable area, and scratch-pad area.

 The banks contain different general purpose registers such as R0-

R7, and all such registers are byte-addressable registers that store

or remove only 1-byte of data.

Banks and Registers:

 The B0, B1, B2, and B3 stand for banks and each bank contains eight

general purpose registers ranging from ‘R0’ to ‘R7’.

 All these registers are byte-addressable registers. Data transfer

between general purpose registers to general purpose registers is

not possible. These banks are selected by the Program Status Word

(PSW) register.

https://www.elprocus.com/wp-content/uploads/2014/05/General-Purpose-Memory.jpg

 FLAG REGISTER (PSW) OF 8051:

 PSW – PROGRAM STATUS WORD

 It is an 8-bit register.

 It is also called the “Flag register”, as it mainly contains the status
flags.

 These flags indicate status of the current result.

 They are changed by the ALU after every arithmetic or logic
operation.

 The flags can also be changed by the programmer.

 PSW is a bit addressable register.

 Each bit can be individually set or reset by the programmer.

 The bits can be referred to by their bit numbers (PSW.4) or by their
name (RS1).

 CY - CARRY FLAG

 It indicates the carry out of the MSB, after any arithmetic operation.

 If CY = 1, There was a carry out of the MSB

 If CY = 0, There was no carry out of the MSB

AC – AUXILIARY CARRY FLAG

 It indicates the carry from lower nibble (4-bits) to higher nibble.

 If the 8bits are numbered Bit 7 --- Bit 0, this is the carry from Bit 3
to Bit 4.

 If AC = 1, There was an auxiliary carry

 If AC = 0, There was no auxiliary carry
 Note: It is particularly useful in an operation called DA A (Decimal

Adjust after Addition).

OVR - OVERFLOW FLAG

 It indicates if there was an overflow during a signed operation.

 An 8-bit signed number has the range -80H… 00H… +7FH. Any
result, out of this range causes an overflow.

 If OVR = 1, There was an overflow in the result If OVR = , There was
no overflow in the result

 Overflow is determined by doing an Ex-Or between the 2nd last carry
(C6) and the last carry (C7)

 Note: After an overflow, the Sign (MSB) of the result becomes wrong.

P - PARITY FLAG

 It indicates the Parity of the result.

 Parity is determined by the number of 1’s in the result.

 If PF = 1, The result has ODD parity

 If PF = 0, The result has EVEN parity

F0 – USER DEFINED FLAG

 This flag is available to the programmer.

 It can be used by us to store any user defined information.

 For example: In an Air Conditioning unit, programmer can use this
flag indicate whether the compressor is ON or OFF (1 or 0).

 This flag can be changed by simple instructions like SETB and CLR.

 SETB PSW.5; This makes F0 bit 1

 CLR PSW.5; This makes F0 bit0

RS1, RS0 – REGISTER BANK SELECT

 The initial 32 locations (bytes) of the Internal RAM are available to
the programmer as registers.

 Having so many registers makes programming easier and faster.

 Naming R0… R31, would tremendously increase the number of
opcodes.

 Hence the registers are divided into 4 banks: Bank0… Bank3.

 Each bank has 8 registers named R0… R7.

 At a time, only of the four banks is the “active bank”.

 RS1 and RS0 are used by the programmer to select the active bank.

NUMERICAL EXAMPLES FOR FLAG REGISTER:

Example 1:

32 H0011 0001

23 H0010 0011

54 H0101 0100

 Flag Affected: CY=0, AC=0, OVR=0, P=1

 Example 2:

39 H0011 1001

27 H0010 0111

60 H0110 0000

 Flag Affected: CY=0, AC=1, OVR=0, P=0
 Example 3:

42 H0100 0010

44 H0100 0100

86 H1000 0110

 Flag Affected: CY=0, AC=0, OVR=1, P=1

RS1

RS0
REGISTER BANK

SELECTED BY

INSTRUCTIONS

0 0 Bank 0
CLR PSW.4

CLR PSW.3

0 1 Bank 1
CLR PSW.4

SETB PSW.3

1 0 Bank 2
SETB PSW.4

CLR PSW.3

1 1 Bank 3
SETB PSW.4

SETB PSW.3

 The result 86H is out of range for a “Signed” Number as it has
become greater than +7FH.

 Such an event is called a “Signed Overflow”.

 In such a case the MSB of the result gives a wrong sign.

 Though the result is +ve (+86H) the MSB is “1” indicating that the
result is –ve.

 Overflow is determined by doing an Ex-Or between the 2nd last Carry
and the last Carry.

 Here the 2nd last Carry (the one coming into the MSB) is “1”.

 The final carry (The one going out of the MSB) is “0”. As “1” Ex-Or
“0” = “1”, the Overflow flag is “1”.

Example 1:

Assembly program to move 6 natural numbers in bank0

register R0-R5

Org 0000h (starting addresses declaration)

MOV PSW, #00h (open the bank0 memory)

MOV r0, #00h (starting address of bank0 memory)

MOV r1, #01h

MOV r2, #02h

MOV r2, #03h

MOV r3, #04h

MOV r4, #05h

END

 Example 2:

Assembly program to move 6 natural numbers in bank1

register R0-R7

 Org 0000h (starting addresses declaration)

MOV PSW, #08h (open the bank1 memory)

MOV r0, 00h (value send to the bank1 memory)

MOV r1, 02h

MOV r2, 02h

MOV r2, 03h

MOV r3, 04h

MOV r4, 05h

MOV r5, 06h

MOV r6, 07h

MOV r7, 08h

END

6.9 INTERRUPTS OF 8051:

 Interrupts are the events that temporarily suspend the main
program, pass the control to the external sources and execute their
task. It then passes the control to the main program where it had
left off.

 8051 has 5 interrupt signals, i.e. INT0, TFO, INT1, TF1, and RI/TI.
Each interrupt can be enabled or disabled by setting bits of the IE
register and the whole interrupt system can be disabled by clearing
the EA bit of the same register.

 Or

 An interrupt is an event that occurs randomly in the flow of

continuity. It is just like a call you have when you are busy with

some work and depending upon call priority you decide whether to

attend or neglect it.

 Same thing happens in microcontrollers. 8051 architecture handles

5 interrupt sources, out of which two are internal (Timer

Interrupts), two are external and one is a serial interrupt. Each

of these interrupts has their interrupt vector address. Highest

priority interrupt is the Reset, with vector address 0x0000.
 Vector Address:

 This is the address where controller jumps after the interrupt to
serve the ISR (interrupt service routine).

Interrupt Flag
Interrupt vector
address

Reset - 0000H

INT0 (Ext. int. 0) IE0 0003H

Timer 0 TF0 000BH

INT1 (Ext. int. 1) IE1 0013H

Timer 1 TF1 001BH

Serial TI/RI 0023H

Reset

 Reset is the highest priority interrupt, upon reset 8051

microcontroller start executing code from 0x0000 address.

Internal interrupt (Timer Interrupt)

 8051 has two internal interrupts namely timer0 and timer1.

Whenever timer overflows, timer overflow flags (TF0/TF1) are set.

Then the microcontroller jumps to their vector address to serve the

interrupt. For this, global and timer interrupt should be enabled.

Serial Port Interrupt (Common for RI or TI)

 All interrupts are vectored i.e. they cause the program to execute an
ISR from a pre-determined address in the Program Memory.

 Interrupts are controlled mainly by IE and IP SFR's and also by some

bits of TCON SFR.

 IE - Interrupt Enable (SFR) [Bit-Addressable As IE.7 to IE.0]

1 = Enable respective Interrupt

EA --- ET2 ES ET1 EX1 ET0 EX0

Enable All
 = Enable All Interrupts 1
 = Disable All Interrupts 0

Reserved

Enable Timer
1 Interrupt

Enable Ext.
Interrupt 1

Enable Ext.
Interrupt 0

Enable Timer
 Interrupt 0

Enable Serial
Interrupt

0 = Disable respective Interrupt

 IP - Interrupt Priority (SFR) [Bit-Addressable As IP.7 to IP.0]

 10 = Priority of respective Interrupt = Priority of respective

Interrupt i.e. HIGHLOW

Timer Overflow Interrupts (TF1 and TF0)

 When any of the 2 Timers overflow, their respective bit TFX (TF1 or

TF0) is set in TCON SFR.

 If Timer Interrupts are enabled then the timer interrupt occurs. The

TFX bits are cleared when their respective ISR is executed.

Serial Port Interrupt (RI or TI)

 While receiving serial data, when a complete byte is received the RI

(receive interrupt) bit is set in the SCON.

 During transmission, when a complete byte is transmitted the TI
(transmit interrupt) bit is set in the SCON.

 ANY of these events can cause the Serial Interrupt (provided Serial

Interrupt is enabled).

 The RI/TI bit is not cleared automatically on executing the ISR. The
program should explicitly clear this bit to allow further Serial

Interrupts.

IE register: Interrupt Enable Register

 IE register is used to enable/disable interrupt sources.

--- --- PT2 PS PT1 PX1 PT0 PX0

Priority of
Timer 1 Int.

Priority of
Ext. Int.0

Priority of
Timer 0 Int.

Priority of
Serial Int.

Reserved

Priority of
Ext. Int.1

 Bit 7 – EA: Enable All Bit

 1 = Enable all interrupts

 0 = Disable all interrupts

 Bit 6,5 – Reserved bits

 Bit 4 – ES: Enable Serial Interrupt Bit

 1 = Enable serial interrupt

 0 = Disable serial interrupt

 Bit 3 – ET1: Enable Timer1 Interrupt Bit

 1 = Enable Timer1 interrupt

 0 = Disable Timer1 interrupt

 Bit 2 – EX1: Enable External1 Interrupt Bit

 1 = Enable External1 interrupt

 0 = Disable External1 interrupt

 Bit 1 – ET0: Enable Timer0 Interrupt Bit

 1 = Enable Timer0 interrupt

 0 = Disable Timer0 interrupt

 Bit 0 – EX0: Enable External0 Interrupt Bit

 1 = Enable External0 interrupt

 0 = Disable External0 interrupt

Interrupt priority

 Priority to the interrupt can be assigned by using interrupt priority

register (IP)

Interrupt priority after Reset:

Priority Interrupt source Intr. bit / flag

1 External Interrupt 0 INT0

2 Timer Interrupt 0 TF0

3 External Interrupt 1 INT1

4 Timer Interrupt 1 TF1

5 Serial interrupt (TI/RI)

 In the table, interrupts priorities upon reset are shown. As per 8051

interrupt priorities, lowest priority interrupts are not served until

microcontroller is finished with higher priority ones. In a case when

two or more interrupts arrives microcontroller queues them

according to priority.

IP Register: Interrupt priority register

 8051 has interrupt priority register to assign priority to

interrupts.

 Bit 7, 6, 5 – Reserved bits.

 Bit 4 – PS: Serial Interrupt Priority Bit

 1 = Assign high priority to serial interrupt.

 0 = Assign low priority to serial interrupt.

 Bit 3 – PT1: Timer1 Interrupt Priority Bit

 1 = Assign high priority to Timer1 interrupt.

 0 = Assign low priority to Timer1 interrupt.

 Bit 2 – PX1: External Interrupt 1 Priority Bit

 1 = Assign high priority to External1 interrupt.

 0 = Assign low priority to External1 interrupt.

 Bit 1 – PT0: Timer0 Interrupt Priority Bit

 1 = Assign high priority to Timer0 interrupt.

 0 = Assign low priority to Timer0 interrupt.

 Bit 0 – PX0: External0 Interrupt Priority Bit

 1 = Assign high priority to External0 interrupt.

 0 = Assign low priority to External0 interrupt.

 Or

External Interrupts (INT1 and INT0):

 Pins INT1 and INT0 are inputs for external interrupts.

 These interrupts can be -ve edge or low-level triggered depending

upon the IT0 and IT1 bit in

 TCON SFR. (ITX = 1 è -ve edge triggered)

 Whew any of these interrupts occur the respective bits TE1 or IE0

are set in the TCON SFR. If External Interrupts are enabled then the

ISR is executed from the respective address.

Interrupt Sequence

 The following sequence is executed to service an interrupt:

 Address of next instruction of the main program i.e. PC is pushed

into the Stack.

 All interrupts are disabled, by making EA bit in IE SFR0.

 Program Control is shifted to the Vector Address (location) of the
ISR. The ISR begins.

Returning Sequence

 RETI instruction denotes the end of the ISR.

 It causes the processor to POP the contents of the Stack Top into the

PC.

 It also re-enables interrupts by making EA bit in IE SFR1. The
main program resumes.

Interrupt Priorities

 8051 has only two priority levels for the interrupts: Low and High.

 Interrupt priorities are set using the IP SFR.

 As the name suggests, a high priority interrupt can interrupt a low
priority interrupt.

 It two or more interrupts at the same level occur simultaneously

then priorities are decided as follows:

INTERRUPT PRIORITY VECTOR ADDRESS

INT0

1 0003H

TF0 2 000BH

INT1

3 0013H

TF1 4 001BH
Serial (RI or TI) 5 0023H

 DIAGRAM FOR INTERRUPTS

 OR

External interrupts in 8051

 8051 has two external interrupt INT0 and INT1.

 8051 controller can be interrupted by external Interrupt, by

providing level or edge on external interrupt pins PORT3.2,

PORT3.3.

 External peripherals can interrupt the microcontroller through

these external interrupts if global and external interrupts are

enabled.

 Then the microcontroller will execute current instruction and jump

to the Interrupt Service Routine (ISR) to serve to interrupt.

 In polling method microcontroller has to continuously check for a

pulse by monitoring pin, whereas, in interrupt method, the

microcontroller does not need to poll. Whenever an interrupt

occurs microcontroller serves the interrupt request.

 External interrupt has two types of activation level

1. Edge triggered (Interrupt occur on rising/falling edge detection)

2. Level triggered (Interrupt occur on high/low-level detection)

 In 8051, two types of activation level are used. These are,

Low level triggered

 Whenever a low level is detected on the INT0/INT1 pin while global

and external interrupts are enabled, the controller jumps to

interrupt service routine (ISR) to serve interrupt.

Falling edge triggered

 Whenever falling edge is detected on the INT0/INT1 pin while

global and ext. interrupts are enabled, the controller jumps to

interrupt service routine (ISR) to serve interrupt.

 There are lower four flag bits in TCON register required to select

and monitor the external interrupt type and ISR status.

TCON: Timer/ counter Register

 Bit 3- IE1:

 External Interrupt 1 edge flag, set by hardware when interrupt on

INT1 pin occurred and cleared by hardware when interrupt get

processed.

 Bit 2- IT1:

 This bit selects external interrupt event type on INT1 pin,

 1= sets interrupt on falling edge

 0= sets interrupt on low level

 Bit 1- IE0:

 Interrupt0 edge flag, set by hardware when interrupt on INT0 pin

occurred and cleared by hardware when an interrupt is processed.

 Bit 0 - IT0:

 This bit selects external interrupt event type on INT0 pin.

 1= sets interrupt on falling edge

 0= sets interrupt on low level

Example

Let’s program the external interrupt of AT89C51 such that, when

falling edge is detected on INT0 pin then the microcontroller will

toggle the P1.0 pin.

6.10 TIMER SECTION OF 8051:

 The 8051 has two timers: timer0 and timer1. They can be used

either as timers or as counters. Both timers are 16 bits wide. Since

the 8051 has an 8-bit architecture, each 16-bit is accessed as two

separate registers of low byte and high byte.

 There are two 16-bit timers and counters in 8051

microcontroller: timer 0 and timer 1. Both timers consist of 16-bit

register in which the lower byte is stored in TL and the higher byte

is stored in TH. Timer can be used as a counter as well as for timing

operation that depends on the source of clock pulses to counters.

 8051 has 2, 16-bit Up Counters T1 and T0.

 If the counter counts internal clock pulses it is known as timer.

 If it counts external clock pulses it is known as counter.

 Each counter is divided into 2, 8-bit registers TH1 - TL1 and TH0 -

TL0.

 The timer action is controlled mainly by the TCON and the TMOD

registers.

TCON - Timer Control (SFR) [Bit-Addressable As TCON.7 to
TCON.0]

T

F

1

T

R

1

T

F

0

T

R

0

I

E

1

I

T

1

I

E

0

I

T

0

TF1 and TF0: (Timer Overflow Flag)

 Set (1) when Timer 1 or Timer 0 overflows respectively i.e. its bits
roll over from all 1's to all 0's.

 Cleared (0) when the processor executes ISR (address 001BH for

Timer 1 and 000BH for Timer 0).

TR1 and TR0: (Timer Run Control Bit)

 Set (1) - Starts counting on Timer 1 or Timer 0 respectively.

 Cleared (0) - Halts Timer 1 or Timer 0 respectively.

IE1 and IE0: (External Interrupt Edge Flag)

 Set (1) when external interrupt signal received at INT1 or INT0

respectively.

 Cleared (0) when ISR executed (address 0013H for Timer 1 and

0003H for Timer 0).

IT1 and IT0: (External Interrupt Type Control Bit)

 Set (1) - Interrupt at INT1 or INT0 must be -ve edge triggered.

 Cleared (0) - Interrupt at INT1 or INT0 must be low-level triggered.

TMOD - Timer Mode Control (SFR) [NOT Bit-Addressable]

 Timer 1 Timer 0

C/T: (Counter/Timer)

 Set (1) - Acts as Counter (Counts external frequency on T1 and T0

pin inputs).

 Cleared (0) - Acts as Timer (Counts internal clock frequency,

fosc/12).

Gate: (Gate Enable Control bit)

 Set (1) - Timer controlled by hardware i.e. INTX signal.

 Cleared (0) – Counting independent of INTX signal.

M1, M0: (Mode Selection bits)

 Used to select the operational modes of the respective Timer.

M1

M0

Timer Mode

0

0

Mode 0

0

1

Mode 1

1

0

Mode 2

1

1

Mode 3

Timer Counter Interrupts

Gate C/T M1 M0 Gate C/T M1 M0

 To use the timer, a certain count value is placed in the Count

Register.

 This value is the Max count—desired count+1

 On each count (rising edge of the input clock) the counter

increments its value.

 When the counter rolls over (i.e. form all 1's to all 0's) it is said to

overflow.

 Thus the Timer Overflow Flag, TFX (TF1 or TF0) is set.
 If timer interrupt is enabled then the Timer Interrupt will occur on

overflow.
Timer Counter Logic

 As shown above, based on C/T bit the timer functions as a Counter

or as a Timer.

 If it is a Timer, it will count the internal clock frequency of 8051
divided by 12d (f/12).

 If it is a Counter, the input clock signal is applied at the TX (T1 or T0)
input pins for Timer1 or

 Timer0 respectively. #please refer Bharat Sir's Lecture Notes for
this...

 As shown the Timer is running only if the TRX bit (TR1 or TR0) is

set.

 Also if the Gate bit is set in the TMOD then the INTX (INT1 or INT0)

pin must be “high (1)” for the timer to count.

 TIMER MODES:

a) Ti
mer Mode 0 (13-bit Timer/Counter)

 THX is used as an 8-bit counter.

 TLX is used as a 5-bit pre-set. Hence 13-bits are used for counting.

 On each count the TLX increments.
 Each time TLX rolls-over, THX increments.
 Thus the input frequency is divided by 32 (5-bits of TLX and 25 =

32).

 The timer overflow flag TFX is set only when THX overflows i.e. rolls
from FFH to 00H. Max Count = 213 = 8K = 8192 (1FFFH). Hence Max

Delay 8192(12/f)

b) Ti
mer Mode 1 (16-bit Timer/Counter)

 All 16-bits of the Counter are used (8 bits of THX and 8 bits of TLX).

 On each count the 16-bit Timer increments.
 The timer overflow flag TFX is set when the Timer rolls-over from

FFFFH to 0000H. Max Count => 216 = 16K = 65536 (FFFFH). Hence
Max Delay 65536(12/f).

c) Timer Mode 2 (Auto reload TL from TH)

 TLX is used as an 8-bit counter.
 THX holds the count value to be reloaded.
 On each count TLX increments.

 When TLX rolls-over (i.e. from FFH to 00H), the following events

take place:
1. Timer overflow flag TFX is set, hence timer interrupt occurs.
2. The value of THX is copied into TLX. Hence TLX is auto-reloaded
form THX, and the process repeats.

 Thus the timer interrupt occurs at regular intervals "Continuously".

 This mode is used to generate a desired frequency using the Timer

Flag. Max Count è 28 = 256 (FFH). Hence Max Delay è 256(12/f).

d) Timer Mode 3 (Two 8-bit Timers Using Timer0)

 Timer 0 is used as 2 separate 8-bit timers TH0 and TL0.

 TL0 uses the control bits (TR0 and TF0) of Timer 0.

 It can work as a Timer or a Counter.

 TH0 uses the control bits (TR1 and TF1) of Timer 1.

 It can work only as a Timer. #please refer Bharat Sir's Lecture Notes
for this...

 Timer 1 can be in Mode 0, Mode 1, or Mode 2, but will not generate

an interrupt.

 6.11 8051 TIMER/COUNTER (HARDWARE DELAY) PROGRAMMING:

Example 1:

 WAP to generate a delay of 20 µsec using internal timer-0 of
8051. After the delay send a “1” through Port3.1. Assume
Suitable Crystal Frequency

NOTE: In 8051, if we select a Crystal of 12 MHz, then Timer freq will be
fosc/12 è 1MHz. Hence each count will require 1/1MHz è 1 µsec. Thus
for 20 µsec, the Desired Count will be 20 14H. For an Up-Counter
(Mode 1):
Count = Max Count – Desired Count + 1 Count = FFFF – 14 + 1
Count = FFECH #Please refer Bharat Sir's Lecture Notes for this...

SOLN: MOV TMOD,

#01H

; Program

 TMOD(0000 0001)2

 ...Timer0 Mode1
 MOV TL0, #0ECH ; Load lower byte of

 Count

 MOV TH0, #0FFH ; Load upper byte of

 Count
 MOV TCON, #10H ; Program TCON (0001

 0000)2…start

 Timer0
WAIT: JNB TCON.5, WAIT ; Wait for overflow

 SETB P3.1 ; Send a “1” through

 Port3.1

 MOV TCON, #00H ; Stop Timer0
HERE: SJMP HERE ; End of program

 Example 2:

 WAP to generate a Square wave of 1 KHz from the TxD pin of
8051, Q11 usingTimer1. Assume Clock Frequency of 12 MHz

NOTE: For a Square wave of 1 KHz, the delay required is .5 msec.
We know, each count will require 1/1MHz è 1 µsec.
Thus for 500 µsec, the Desired Count will be 500d è 01F4H. For an
Up-Counter (Mode 1):
Count = Max Count – Desired Count + 1
Count = FFFF – 01F4 + 1
Count = FE0CH

SOLN: CLR P3.1

; Clear Txd Line

 initially

MOV TMOD, #10H ; Program TMOD(0001

 0000)2...Timer1 Mode1
REPEAT: MOV TL1, #0CH ; Load lower byte of

 Count

MOV TH1, #0FEH ; Load upper byte of

 Count
MOV TCON, #40H ; Program TCON(0100

 0000)2…start

 Timer1
WAIT: JNB TCON.7, WAIT ; Wait for overflow

CPL P3.1 ; Toggle Txd pin after

 the delay

MOV TCON, #00H ; Stop Timer1
SJMP REPEAT ; Repeat the process

Example 3:

 WAP to generate a Rectangular wave of 1 KHz, having a 25% Duty
Cycle from the TxD pin of 8051, using Timer1. Assume XTAL of 12
MHz

NOTE: For a Rectangular wave of 1 KHz, having 25% Duty Cycle: TON = 250
µsec; TOFF = 750 µsec.

For TON: Desired Count = 250 d è 00FAH
Count ON = Max Count – Desired Count + 1

Count ON = FFFF – 00FA + 1
Count ON = FF06H

For TOFF: Desired Count = 750 d è 02EEH
Count OFF = Max Count – Desired Count + 1
Count OFF = FFFF – 02EE + 1
Count OFF = FD12H

SOLN: MOV TMOD, #10H ; Program TMOD (0001
 0000)2...Timer1 Mode1

REPEAT: MOV TL1, #06H ; Load lower byte of
 Count ON

 MOV TH1, #0FFH ; Load upper byte of

 Count ON

 SETB P3.1 ; Display“1”at Txd
 MOV TCON, #40H ; Program TCON

 (0100 0000)2…

 startTimer1

ON: JNB TCON.7, ON ; Maintain“1” at Txd
 CLR P3.1 ; Clear Txd

 MOV TCON, #00H ; Stop Timer1

 MOV TL1, #12H ; Load lower byte of Count

 MOV TH1, #0FDH ; Load upper byte of

 Count OFF

 MOV TCON, #40H ; Program TCON (0100
 0000)2…start Timer1

OFF: JNB TCON.7, OFF ; Maintain “0” at Txd

 MOV TCON, #00H ; Stop Timer1

 SJMP REPEAT ; Repeat the process

Note: If System Freq = 12MHz, it is clear that 1 Count requires 1 msec.
In Mode 1, we have a 16bit Count.
Hence max pulses that can be desired is 216 = 65536.
Count = Max Count – Desired Count + 1
 = 65535 – 65536 + 1

 = 0.
Thus we will get max delay if we load the count as 0000H, as it will have to “roll-over”
back to 0000H to overflow.
Hence Max delay if XTAL is of 12 MHz … is 65536 µsec è 65.536 msec.
Similarly Max delay if XTAL is of 11.0592 MHz … is 71106 µsec è 71.106 msec.

Example 4:

 WAP to generate a delay of 1 SECOND using Timer1. Assume
Clock Frequency of 12 MHz (Popular Question in College!)

NOTE: Max delay if XTAL is of 12 MHz … is 65536 µsec è 65.536 msec. Hence
to get a delay of 1 second, we will have to perform the counting
repeatedly in a loop.
Let’s keep the Desired Count 50000. (50 msec delay)
Now 50000d = C350H
Count = Max Count – Desired Count + 1 Count = FFFF – C350 + 1
Count = 3CB0H
We will have to perform this counting 1sec/50msec times è 20 times

SOLN: MOV TMOD, #10H ; Program TMOD (0001
 0000)2

 Timer1 Mode1

 MOV R0, #14H ; Load count 20 in

 R0
REPEAT: MOV TL1,

#0B0H

; Load lower byte of

 Count ON

 MOV TH1, #3CH ; Load upper byte of
 Count ON

 MOV TCON, #40H ; Program TCON

 (0100 0000)2…start

 Timer1
WAIT: JNB TCON.1,

WAIT

; Wait for an overflow

 MOV TCON, #00H ; Stop Timer1

 DJNZ R0, REPEAT ; repeat the process 20
 times

HERE: SJMP HERE: ; End of program

Example 5:

 WAP to read the data from Port1, 10 times, each after a 1 sec
delay. Store the data from RAM locations 20H onwards. When
the operation is complete, ring an “Alarm” connected at Port3.1.
Assume CLK = 12 MHz

NOTE: As seen from the previous program, for a delay of 1 second, we
have Count = 3CB0H. Counting has to be performed 20 times.
Also note that all ports of 8051 are o/p ports by default.

 To program a port as i/p ports, all “1”s must be sent through it.

SOLN: CLR P3.1 ; Clear Port3.1 line

 MOV TMOD, #10H ; Program TMOD(0001

 0000)2...Timer1Mode1
 MOV 90H, #0FFH ; Program Port1 as

 i/p by sending all “1”s

 through it

REPEAT: MOV R0, #0AH ; Load Data Count of

 10 in R0

 MOV R1, #20H ; Load Storage address

 in R1
 MOV @R1, 90H ; Read data from Port

 INC R1 ; Increment data storage

 address from next

 Iteration
 ACALL DELAY ; Call delay of 1 sec before

 going into next

 Iteration

 DJNZ R0, REPEAT ; Repeat till all 10 bytes
 are read

 SETB P3.1 ; Ring “Alarm” at Port3.1

HERE: SJMP HERE: ; End of program

DELAY: MOV R2, #14H ; Load count 20 in R0

REPEAT: MOV TL1, #0B0H ; Load lower byte of

 Count ON

 MOV TH1, #3CH ; Load upper byte of
 Count ON

 MOV TCON, #40H ; Program TCON

 (0100 0000)…start Timer1

WAIT: JNB TCON.1, WAIT ; Wait for an overflow

 MOV TCON, #00H ; Stop Timer1

 DJNZ R2, REPEAT ; Repeat the process 20
times

 RET ; End of delay routine

6.12 ADDRESSING MODES OF 8051:

Addressing Modes is the manner in which operands are given in the
instruction. 8051 supports the following 5 addressing modes:

1. Immediate addressing mode

2. Register addressing mode

3. Direct addressing mode

4. Indirect addressing mode

5. Index addressing mode

1. IMMEDIATE ADDRESSING MODE

 In this addressing mode, the Data is given in the Instruction itself.

 We put a "#" symbol, before the data, to identify it as a data value
and not as an address.

 Example
 MOV A, #35H ; A35H

 MOV DPTR, #3000H; DPTR 3000H

2. REGISTER ADDRESSING MODE
 In this addressing mode, Data is given by a Register in the

instruction.

 The permitted registers are A, R7 … R0 of each memory bank.

 Note: Data transfer between two RAM registers is not allowed.

 Example

MOV A, R0 ; A R0 … If R0 = 25H, then A gets the Value

25H.

MOV R5, A ; R5 A

MOV Rx, Ry ; NOT ALLOWED. That’s because this would

allow 64 combinations of register.

 ; As registers invite opcodes, this would need 64 opcodes!

3. DIRECT ADDRESSING MODE

 Here, the address of the operand is given in the instruction.

 Only Internal RAM addresses (00H…7FH) and SFR addresses
(from 80H to FFH) allowed.

 Example
 MOV A, 35 ; AContents of RAM location 35H
 MOV A, 80H ; Acontents of port 0 (SFR at address 80H)
 MOV 20H, 30H ; [20H][30H]
 i.e. Location 20H gets the contents of location

30H.

4. INDIRECT ADDRESSING MODE

 Here, the address of the operand is given in a register.

 Internal RAM and External RAM can be accessed using this
mode.

 The advantage of giving an address using a register is that we
can increment the address in a loop, by simply incrementing the
register, and hence access a series of locations.

INTERNAL RAM: (8-BIT ADDRESS GIVEN BY R0 OR R1):

 ONLY R1 or R0, called as Data Pointers, can be used to specify

address (00H … 7FH).

 A "@" sign is present before the register to indicate that the
register is giving an address.

 Example:

 MOV A, @R0 ; A [R0]

 ; i.e. AContents of Internal RAM Location whose address is given by

R0.

 ; if R0 = 25H, then A gets the contents of Location 25H from Internal

RAM.

 MOV @R1, A ; [R1] A

 ; i.e. Internal RAM Location pointed by R1 gets value of

A.

EXTERNAL RAM: (16 BIT ADDRESS GIVEN BY DPTR):

 For the External RAM, address is provided by R1 or R0, or by
DPTR.

 If DPTR is used to give an address, then the full 64KB range of

External RAM from 0000H… FFFFH is available. This is because
DPTR is 16-bit and 216 = 65536.

 An "X" is present in the instruction, to indicate External RAM.

 Example
 MOVX A, @DPTR ; A [DPTR] ^
 ; A gets the contents of External RAM location whose address is given
by DPTR.

; If DPTR=2000H, then A gets contents of location 0025H from the
external RAM

 MOVX @DPTR, A ; [DPTR] ^A
 ; i.e. A is stored at the External RAM location whose address is given
by DPTR.

EXTERNAL RAM: (8 BIT ADDRESS GIVEN BY R0 OR R1):

 If R0 or R1 is used to give an address, then only the first 256
locations of External RAM is available from 0000 H to 00FF H.

 This is because R0 or R1 are 8-bit and 28 = only 256.

 Example

 MOVX A,@R0 ; A [R0] ^
; i.e. A gets the contents of External RAM Location whose address is

given by R0.

; If R0 = 25H, then A gets contents of Location 0025H from the External
RAM

 MOVX @R1, A ; [R1] ^A
; i.e. A is stored at the External RAM Location whose address is given by
R1

5. INDEXED ADDRESSING MODE

 This mode is used to access data from the Code memory (Internal
ROM or External ROM).

 In this addressing mode, address is indirectly specified as a “SUM” of
(A and DPTR) or (A and PC).

 This is very useful because ROM contains permanent data which is
stored in the form of Look Up tables.

 To access a Look Up table, address is given as a SUM or two registers,
where one acts as the base and the other acts as the index within the
table.

 A "C" is present in such instructions, to indicate Code Memory.

 Example

MOVC A, @A+DPTR; A Contents of a ROM Location pointed by

A+DPTR.

; If DPTR = 0400H and A = 05H,

; Then A gets the contents of ROM Location whose address is 0405 H.

MOVC A, @A+PC ; A Contents of a ROM Location pointed
by A+PC.

 The same instruction may operate on Internal or External ROM,

depending upon the address and on the value of EA pin of 8051.

 If the address is in the range of 0000… 0FFFH, then EA pin will

decide if it operates on Internal

 ROM or External ROM. IF EA = 0, External ROM else Internal ROM.

If Address is 1000H and more, it will certainly be External ROM.

6.13 8051 ASSEMBLY LANGUAGE PROGRAMMING:

1. Write a program to add the values of locations 50H and 51H and
store the result in locations in 52h and 53H.

 ORG 0000H ; Set program counter 0000H

 MOV A,50H ; Load the contents of Memory location 50H
into A

 ADD A,51H ; Add the contents of memory 51H with
contents A

 MOV 52H,A ; Save the LS byte of the result in 52H

 MOV A, #00 ; Load 00H into A

 ADDC A, #00 ; Add the immediate data and carry to A

 MOV 53H,A ; Save the MS byte of the result in location
53h

END

2. Write a program to store data FFH into RAM memory locations
50H to 58H using direct addressing mode

 ORG 0000H ; Set program counter 0000H

 MOV A, #0FFH ; Load FFH into A

 MOV 50H, A ; Store contents of A in location 50H

 MOV 51H, A ; Store contents of A in location 5IH

 MOV 52H, A ; Store contents of A in location 52H

 MOV 53H, A ; Store contents of A in location 53H

 MOV 54H, A ; Store contents of A in location 54H

 MOV 55H, A ; Store contents of A in location 55H

 MOV 56H, A ; Store contents of A in location 56H

 MOV 57H, A ; Store contents of A in location 57H

 MOV 58H, A ; Store contents of A in location 58H

END

3. Write a program to subtract a 16 bit number stored at locations 51H-52H
from 55H-56H and store the result in locations 40H and 41H. Assume that the

least significant byte of data or the result is stored in low address. If the
result is positive, then store 00H, else store 01H in 42H.

 ORG 0000H ; Set program counter 0000H

 MOV A, 55H ; Load the contents of memory location 55 into
A

 CLR C ; Clear the borrow flag

 SUBB A,51H ; Sub the contents of memory 51H from
contents of A

 MOV 40H, A ; Save the LS Byte of the result in location
40H

 MOV A, 56H ; Load the contents of memory location
56H into A SUBB A, 52H ; Subtract the content
of memory 52H from the
 Content A.
 MOV 41H, ;Save the MS byte of the result in location
415.
 MOV A, #00 ; Load 005 into A

 ADDC A, #00 ; Add the immediate data and the carry flag
to A

 MOV 42H, A ; If result is positive, store00H, else store
0lH in 42H

END

4. Write a program to add two 16 bit numbers stored at locations 51H-52H
and 55H-56H and store the result in locations 40H, 41H and 42H. Assume
that the least significant byte of data and the result is stored in low address
and the most significant byte of data or the result is stored in high address.

 ORG 0000H ; Set program counter 0000H

 MOV A, 51H ; Load the contents of memory location 51H
into A

 ADD A, 55H ; add the contents of 55H with contents of A

 MOV 40H, A ; Save the LS byte of the result in location
40H

 MOV A, 52H ; Load the contents of 52H into A

 ADDC A, 56H ; Add the contents of 56H and CY flag with A

 MOV 41H, A ; Save the second byte of the result in 41H

 MOV A, #00 ; Load 00H into A

ADDC A, #00 ; Add the immediate data 00H and CY to A

 MOV 42H, A ; Save the MS byte of the result in location
42H

END

5. Write a program to store data FFH into RAM memory locations 50H to
58H using indirect addressing mode.

 ORG 0000H ; Set program counter 0000H

 MOV A, #0FFH ; Load FFH into A

 MOV RO, #50H ; Load pointer, R0-50H

 MOV R5, #08H ; Load counter, R5-08H

 Start: MOV @RO, A ; Copy contents of A to RAM pointed by R0

 INC RO ; Increment pointer

 DJNZ R5, start ; Repeat until R5 is zero

END

6. Write a program to add two Binary Coded Decimal (BCD) numbers
stored at locations 60H and 61H and store the result in BCD at
memory locations 52H and 53H. Assume that the least significant byte
of the result is stored in low address.

 ORG 0000H ; Set program counter 00004

 MOV A, 60H ; Load the contents of memory location 6.0.H into A

 ADD A, 61H ; Add the contents of memory location 61H with
contents of A

 DA A ; Decimal adjustment of the sum in A

 MOV 52H, A ; Save the least significant byte of the result in location
52H

 MOV A, #00 ; Load 00H into .A

 ADDC A, #00H ; Add the immediate data and the contents of carry
flag to A

 MOV 53H, A ; Save the most significant byte of the result in
location 53

 END

7. Write a program to clear 10 RAM locations starting at RAM address
1000H.

 ORG 0000H ; Set program counter 0000H

 MOV DPTR, #1000H ; Copy address 1000H to DPTR

 CLR A ; Clear A

 MOV R6, #0AH ; Load 0AH to R6 again:
 MOVX @DPTR, A ; Clear RAM location pointed by DPTR
 INC DPTR ; Increment DPTR
 DJNZ R6, again ; Loop until counter R6=0

 END

8. Write a program to compute 1 + 2 + 3 + N (say N=15) and save the sum
at70H

 ORG 0000H ; Set program counter 0000H

 N EQU 15

 MOV R0, #00 ; Clear R0

 CLR A ; Clear A

 Again: INC R0 ; Increment R0

 ADD A, R0 ; Add the contents of R0 with A

 CJNE R0, #N, again ; Loop until counter, R0, N

 MOV 70H, A ; Save the result in location 70H END

9. Write a program to multiply two 8 bit numbers stored at locations
70H and 71H and store the result at memory locations 52H and 53H.

Assume that the least significant byte of the result is stored in low
address.

ORG 0000H ; Set program counter 00 OH

MOV A, 70H ; Load the contents of memory location 70h into A

MOV B, 71H ; Load the contents of memory location 71H into B

 MUL AB ; Perform multiplication

MOV 52H, A ; Save the least significant byte of the result in
location 52H MOV 53H, B ; Save the most significant byte of the
result in location 53

END

10.Write a program to exchange the lower nibble of data present in
external memory 6000H and 6001H

 ORG 0000H ; Set program counter 00h

MOV DPTR, #6000H ; Copy address 6000H to DPTR

MOVX A, @DPTR ; Copy contents of 60008 to A

MOV R0, #45H

MOV @R0, A

 ; Load pointer, R0=45H

 ; load pointer, r0=45H
INC DPL ; increment pointer

MOVX A, @DPTR ; Copy contents of 60018 to A

 XCHD A, @R0

MOVX @DPTR, A ; Copy contents of A to 6001 8
DEC DPL ; Decrement pointer

MOV A, @R0 ; Copy contents of RAM pointed by R0

to A
MOVX @DPTR, A ; Copy contents of A to RAM pointed

by DPTR
END

11. Write a program to count the number of and o's of 8 bit data stored in
location 6000H.

 ORG 00008 ; Set program counter 00008

 MOV DPTR, #6000h ; Copy address 6000H to DPTR

 MOVX A, @DPTR ; Copy number to A

 MOV R0, #08 ; Copy 08 in RO

 MOV R2, #00 ; Copy 00 in R2

 MOV R3, #00 ; Copy 00 in R3

 CLR C ; Clear carry flag

 BACK: RLC A ; Rotate A through carry flag

 JC NEXT ; If CF=1, branch to next

 INC R2 ; If CF=0, increment R2 AJMP NEXT2

 NEXT: INC R3 ; If CF=1, increment R3

 NEXT2: DJNZ RO, BACK ; Repeat until R0 is zero

 END

12.Write a program to shift a 24 bit number stored at 57H-55H to the left

 Logically four Places.

Assume that the least significant byte of data is stored in lower address.
 ORG 0000H ; Set program counter 0000h

 MOV R1, #04 ; Set up loop count to 4

Again: MOV A, 55H ; Place the least significant byte of data in A

 CLR C ; Clear the carry flag

 RLC A ; Rotate contents of A (55H) left through carry

 MOV 55H, A

 MOV A, 56H

 RLC A ; Rotate contents of A (56H) left through carry

 MOV 56H, A

 MOV A, 57H

 RLC A ; Rotate contents of A (57H) left through carry

 MOV 57H, A

 DJNZ R1, again ; Repeat until R1 is zero

 END

 6.14 SERIAL COMMUNICATION:

DATA COMMUNICATION:

 The 8051 microcontroller is parallel device that transfers eight bits of data
simultaneously over eight data lines to parallel I/O devices.

 Parallel data transfer over a long is very expensive. Hence, a serial
communication is widely used in long distance communication.

 In serial data communication, 8-bit data is converted to serial bits using a parallel
in serial out shift register and then it is transmitted over a single data line.

 The data byte is always transmitted with least significant bit first.

BASICS OF SERIAL DATA COMMUNICATION,
Communication Links

1. Simplex communication link:

 In simplex transmission, the line is dedicated for transmission. The transmitter
sends and the receiver receives the data.

2. Half duplex communication link:

 In half duplex, the communication link can be used for either transmission or
reception. Data is transmitted in only one direction at a time.

3. Full duplex communication link:

 If the data is transmitted in both ways at the same time, it is a full duplex i.e.
transmission and reception can proceed simultaneously. This communication
link requires two wires for data, one for transmission and one for reception.

Types of Serial communication:

Serial data communication uses two types of communication.

1. Synchronous serial data communication:

 In this transmitter and receiver are synchronized.

 It uses a common clock to synchronize the receiver and the transmitter.

 First the synch character is sent and then the data is transmitted.

 This format is generally used for high speed transmission.

Transmitter Receiver

Transmitter

Receiver

Receiver

Transmitter

Receiver

Transmitter

Transmitter

Receiver

 In Synchronous serial data communication a block of data is transmitted at a
time.

2. Asynchronous Serial data transmission:

 In this, different clock sources are used for transmitter and receiver.

 In this mode, data is transmitted with start and stop bits.

 A transmission begins with start bit, followed by data and then stop bit.

 For error checking purpose parity bit is included just prior to stop bit.

 In Asynchronous serial data communication a single byte is transmitted at a
time.

Baud rate:

 The rate at which the data is transmitted is called baud or transfer rate.

 The baud rate is the reciprocal of the time to send one bit.

 In asynchronous transmission, baud rate is not equal to number of bits per
second.

 This is because; each byte is preceded by a start bit and followed by parity and
stop bit.

 For example, in synchronous transmission, if data is transmitted with 9600
baud it means that 9600 bits are transmitted in one second.

 For bit transmission time = 1 second/ 9600 = 0.104 ms.

8051 SERIAL COMMUNICATION:

The 8051 supports a full duplex serial port.

Three special function registers support serial communication.

1. SBUF Register:

Serial Buffer (SBUF) register is an 8-bit register. It has separate SBUF
registers for data transmission and for data reception. For a byte of data to
be transferred via the TXD line, it must be placed in SBUF register.
Similarly, SBUF holds the 8-bit data received by the RXD pin and read to
accept the received data.

2. SCON register:
The contents of the Serial Control (SCON) register are shown below. This
register contains mode selection bits, serial port interrupt bit (TI and RI)
and also the ninth data bit for transmission and reception (TB8 and RB8).

3. PCON register:

The SMOD bit (bit 7) of PCON register controls the baud rate in
asynchronous mode transmission.

SERIAL COMMUNICATION MODES:

1. Mode 0

In this mode serial port runs in synchronous mode. The data is transmitted
and received through RXD pin and TXD is used for clock output. In this mode
the baud rate is 1/12 of clock frequency.

2. Mode 1

In this mode SBUF becomes a 10 bit full duplex transceiver. The ten bits are
1 start bit, 8 data bit and 1 stop bit. The interrupt flag TI/RI will be set once
transmission or reception is over. In this mode the baud rate is variable and
is determined by the timer 1 overflow rate.

Baud rate = [2smod/32] x Timer 1 overflow Rate

 = [2smod/32] x [Oscillator Clock Frequency] / [12 x [256 – [TH1]]]

3. Mode 2

This is similar to mode 1 except 11 bits are transmitted or received. The 11 bits
are, 1 start bit, 8 data bit, a programmable 9th data bit, 1 stop bit.

 Baud rate = [2smod/64] x Oscillator Clock Frequency

4. Mode 3

This is similar to mode 2 except baud rate is calculated as in mode 1

CONNECTIONS TO RS-232

RS-232 standards:

To allow compatibility among data communication equipment made by
various manufactures, and interfacing standard called RS232 was set by the
Electronics Industries Association (EIA) in 1960. Since the standard was set
long before the advent of logic family, its input and output voltage levels are
not TTL compatible.

In RS232, a logic one (1) is represented by -3 to -25V and referred as MARK
while logic zero (0) is represented by +3 to +25V and referred as SPACE. For
this reason to connect any RS232 to a microcontroller system we must use
voltage converters such as MAX232 to convert the TTL logic level to RS232
voltage levels and vice-versa. MAX232 IC chips are commonly referred as
line drivers.

In RS232 standard we use two types of connectors. DB9 connector or DB25
connector.

 DB9 Male Connector DB25 Male Connector

The pin description of DB9 and DB25 Connectors are as follows

The 8051 connection to MAX232 is as follows:

 The 8051 has two pins that are used specifically for transferring and
receiving data serially.

 These two pins are called TXD, RXD. Pin 11 of the 8051 (P3.1) assigned to
TXD and pin 10 (P3.0) is designated as RXD. These pins TTL compatible;
therefore they require line driver (MAX 232) to make them RS232

compatible.

 MAX 232 converts RS232 voltage levels to TTL voltage levels and vice
versa.

 One advantage of the MAX232 is that it uses a +5V power source which is
the same as the source voltage for the 8051.

 The typical connection diagram between MAX 232 and 8051 is shown
below.

SERIAL COMMUNICATION PROGRAMMING IN ASSEMBLY AND C.

Steps to programming the 8051 to transfer data serially

1. The TMOD register is loaded with the value 20H, indicating the use of
the Timer 1 in mode 2 (8-bit auto reload) to set the baud rate.

2. The TH1 is loaded with one of the values in table 5.1 to set the baud rate
for serial data transfer.

3. The SCON register is loaded with the value 50H, indicating serial mode
1, where an 8-bit data is framed with start and stop bits.

4. TR1 is set to 1 start timer 1.

5. TI is cleared by the “CLR TI” instruction.

6. The character byte to be transferred serially is written into the SBUF
register.

7. The TI flag bit is monitored with the use of the instruction JNB TI, target
to see if the character has been transferred completely. 8. To transfer the
next character, go to step 5.

Example 1. Write a program for the 8051 to transfer letter ‘A’ serially at 4800-
baud rate, 8 bit data, and 1 stop bit continuously.

ORG 0000H

LJMP START

ORG 0030H

 START: MOV TMOD, #20H ; select timer 1 mode 2

 MOV TH1, #0FAH ; load count to get baud rate of 4800

 MOV SCON, #50H ; initialize UART in mode 2

 ; 8 bit data and 1 stop bit

 SETB TR1 ; start timer

 AGAIN: MOV SBUF, #'A' ; load char ‘A’ in SBUF

BACK: JNB TI, BACK ; Check for transmit interrupt flag

 CLR TI ; Clear transmit interrupt flag

SJMP AGAIN

END

Example 2. Write a program for the 8051 to transfer the message ‘EARTH’
serially at 9600 baud, 8 bit data, and 1 stop bit continuously.

ORG 0000H

LJMP START

ORG 0030H

 START: MOV TMOD, #20H ; select timer 1 mode 2

MOV TH1, #0FDH ; load count to get required baud rate of 9600 MOV
SCON, #50H ; initialize uart in mode 2

 ; 8 bit data and 1 stop bit

 SETB TR1 ; start timer

 LOOP: MOV A, #'E' ; load 1st letter ‘E’ in a

 ACALL LOAD ; call load subroutine

 MOV A, #'A' ; load 2nd letter ‘A’ in a

 ACALL LOAD ; call load subroutine

 MOV A, #'R' ; load 3rd letter ‘R’ in a

 ACALL LOAD ; call load subroutine

 MOV A, #'T' ; load 4th letter ‘T’ in a

 ACALL LOAD ; call load subroutine

 MOV A, #'H' ; load 4th letter ‘H’ in a

 ACALL LOAD ; call load subroutine

 SJMP LOOP ; repeat steps

 LOAD: MOV SBUF, A

 HERE: JNB TI, HERE ; Check for transmit interrupt flag

CLR TI ; Clear transmit interrupt flag RET

END

6.15 INTERFACING:
Interfacing is the process of connecting devices together so that they can
exchange the information and that proves to be easier to write the programs.
There are different type of input and output devices as for our requirement such
as LEDs, LCDs, 7segment, keypad, motors and other devices.

Interfacing LED with 8051

 Light Emitting Diodes or LEDs are the mostly commonly used components in
many applications. They are made of semiconducting material. In this project, I
will describe about basics of Interfacing LED with 8051 Microcontroller.

 Light Emitting Diodes are the semiconductor light sources. Commonly used
LEDs will have a cut-off voltage of 1.7V and current of 10mA. When an LED is
applied with its required voltage and current it glows with full intensity.

 The Light Emitting Diode is similar to the normal PN diode but it emits energy
in the form of light. The color of light depends on the band gap of the
semiconductor. The following figure shows “how an LED glows?”

 Thus, LED is connected to the AT89C51 microcontroller with the help of a
current limiting resistor. The value of this resistor is calculated using the
following formula.

 R= (V-1.7)/10mA, where V is the input voltage.

 Generally, microcontrollers output a maximum voltage of 5V. Thus, the value of
resistor calculated for this is 330 Ohms. This resistor can be connected to
either the cathode or the anode of the LED.

Principle behind Interfacing LED with 8051:

 The main principle of this circuit is to interface LEDs to the 8051 family micro
controller. Commonly, used LEDs will have voltage drop of 1.7v and current of
10mA to glow at full intensity. This is applied through the output pin of the
micro controller.

Circuit Diagram

Circuit Design

The circuit mainly consists of AT89C51 microcontroller. AT89C51 belongs
to the family of 8051 microcontroller. It is an 8-bit microcontroller. This
microcontroller has 4KB of Flash Programmable and Erasable Read Only
Memory and 128 bytes of RAM. This can be programmed and erased a
maximum of 1000 times.

It has two 16 bit timers/counters. It supports USART communication
protocol. It has 40 pins. There are four ports are designated as P0, P1, P2, and
P3. Port P0 will not have internal pull- ups, while the other ports have internal
pull-ups.

https://www.electronicshub.org/wp-content/uploads/2018/04/Interfacing-LED-with-8051-Microcontroller-Circuit-Diagram.jpg

In this circuit, LEDs are connected to the port P0. The controller is
connected with external crystal oscillator to pin 18 and 19 pins. Crystal pins
are connected to the ground through capacitors of 33pf.

INTERFACING STEPPER MOTOR WITH 8051:

A stepper motor is a device that translates electrical pulses into mechanical

movement in steps of fixed step angle.

• The stepper motor rotates in steps in response to the applied signals.

• It is mainly used for position control.

• It is used in disk drives, dot matrix printers, plotters and robotics and process

control circuits.

Structure

Stepper motors have a permanent magnet called rotor (also called the
shaft) surrounded by a stator. The most common stepper motors have four

stator windings that are paired with a center-tap. This type of stepper motor is

commonly referred to as a four-phase or unipolar stepper motor. The center

tap allows a change of current direction in each of two coils when a winding is

grounded, thereby resulting in a polarity change of the stator.

Interfacing

Even a small stepper motor require a current of 400 mA for its operation.

But the ports of the microcontroller cannot source this much amount of
current. If such a motor is directly connected to the

microprocessor/microcontroller ports, the motor may draw large current from

the ports and damage it. So a suitable driver circuit is used with the

microprocessor/microcontroller to operate the motor.

Motor Driver Circuit (ULN2003)

Stepper motor driver circuits are available readily in the form of ICs.

ULN2003 is one such driver IC which is a High-Voltage High-Current Darlington
transistor array and can give a current of 500mA.This current is sufficient to

drive a small stepper motor. Internally, it has protection diodes used to protect

the motor from damage due to back e.m.f. and large eddy currents. So, this

ULN2003 is used as a driver to interface the stepper motor to the
microcontroller.

Operation:

 The important parameter of a stepper motor is the step angle.
 It is the minimum angle through which the motor rotates in response

to each excitation pulse.
 In a four phase motor if there are 200 steps in one complete rotation

then then the step angle is 360/200 = 1.8O .
 So to rotate the stepper motor we have to apply the excitation pulse.

For this the controller should send a hexa decimal code through one of its
ports.

 The hex code mainly depends on the construction of the stepper
motor. So, all the stepper motors do not have the same Hex code for their
rotation.

 For example, let us consider the hex code for a stepper motor to rotate
in clockwise direction is 77H, BBH, DDH and EEH.

 This hex code will be applied to the input terminals of the driver
through the assembly language program.

 To rotate the stepper motor in anti-clockwise direction the same code
is applied in the reverse order.

Stepper Motor interface- Schematic Diagram (for 8051)

The assembly language program for 8051 is given below.
ASSEMBLY LANGUAGE PROGRAM (8051)

Main : MOV A, # 0FF H ; Initialization of Port 1

 MOV P1, A ;

 MOV A, #77 H ; Code for the Phase 1

 MOV P1, A ;

 ACALL DELAY ; Delay subroutine

 MOV A, # BB H ; Code for the Phase II

 MOV P1, A ;

 ACALL DELAY ; Delay subroutine.

 MOV A, # DD H ; Code for the Phase III

 MOV P1, A ;

 ACALL DELAY ; Delay subroutine

 MOV A, # EE H ; Code for the Phase 1

 MOV P1, A ;

 ACALL DELAY ; Delay subroutine

 SJMP MAIN; Keep the motor rotating continuously.

DELAY Subroutine

 MOV R4, #0FF H ; Load R4 with FF

 MOV R5, # 0FF ; Load R5 with FF

LOOP1: DJNZ R4, LOOP1 ; Decrement R4 until zero, wait

tLOOP2: DJNZ R5, LOOP2 ; Decrement R5 until

zero, wait

 RET ; Return to main

program

	1. General Data Registers:
	2. Segment Registers:
	3. Pointers and Index Registers:
	4. 8086 flag register and its functions:
	The Execution Unit (EU):
	Bus Interface Unit (BIU):
	8086 HAS PIPELINING ARCHITECTURE:
	5.6 GENERAL BUS OPERATION OF 8086:

	Memory Segmentation:
	Advantages of the segmented memory scheme are as follows:
	Overlapping and Non-overlapping Memory segments:
	Timing Diagrams:
	Read cycle timing diagram for Minimum mode:
	Write cycle timing diagram for Minimum mode:
	Read cycle timing diagram for Maximum mode:
	5.10 INTERRUPTS:
	HARDWARE INTERRUPTS:
	NMI (non-maskable):
	INTR (Maskable):

	SOFTWARE INTERRUPTS:
	INT- Interrupt instruction with type number
	INT 3-Break Point Interrupt Instruction
	INTO - Interrupt on overflow instruction

	1. Immediate addressing mode:
	 Example

	4. Register indirect addressing mode:
	 Example

	5. Based addressing mode:
	 Example:

	6. Indexed addressing mode:
	Example:

	7. Based-index addressing mode:
	 Example:
	MOV instruction
	PUSH instruction:
	 Example:-
	POP instruction:
	 Example: (1)
	IN & OUT instructions
	XCHG instruction
	 XCHG Destination, Source
	ADD instruction:
	 Example: (2)
	ADC: ADD WITH CARRY
	Example:
	SUB instruction:
	 Example: (3)
	SBB: SUBTRACT WITH BORROW:
	 Example: (4)
	CMP: COMPARE:
	 Example: (5)
	INC & DEC instructions:
	2. Example:
	 Example: (6)
	OR instruction:
	 Example: (7)
	 OR BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then after the operation BL would be BL= 1100 1110.
	NOT instruction:
	1. Example:
	XOR instruction:
	 Example: (8)
	3. Shift / Rotate Instructions:
	SHR instruction:
	ROL instruction:
	ROR instruction:
	RCR instruction
	4. PROGRAM CONTROL TRANSFER INSTRUCTIONS:
	CALL instruction:
	 Example: (9)
	RET instruction:
	Conditional Jump (J cond)
	Iteration control instructions:
	Example: (1)
	WAIT instruction
	ESC instruction
	LOCK instruction
	NOP instruction
	 CLC instruction
	 CMC instruction
	 STD instruction
	 CLD instruction
	 STI instruction
	 CLI instruction
	Example: (2)
	 REP/REPE/REP2/REPNE/REPNZ
	 LODS/LODSB/LODSW
	Example: (3)
	 STOS/STOSB/STOSW
	Example: (4)
	5. CMPS/CMPSB/CMPSW

	5.13 ASSEMBLER DIRECTIVES AND OPERATOR:
	ASSUME:
	DB -Define Byte:
	DQ -Define Quad word:
	DT -Define Ten Bytes:
	DW -Define Word:
	END-End of Program:
	ENDS-End of Segment:
	8 bit Microcontroller:
	16 bit Microcontroller:

	 This is done by a latch, with the help of ALE signal. ALE is “1” when the bus carries address and “0” when the bus carries data.
	 If EA = 0, the External ROM begins from 0000H.
	 If EA = 1, the External ROM begins from 1000H.
	 RD and WR are control signals for External RAM.
	P0.0-P0.7
	P1.0-P1.7
	 Port 1 also has NO alternate function
	P2.0-P2.7
	P3.0-P3.7
	 Hence Data is stored in writeable memory like RAM.
	 Use of EA pin of 8051:
	 Hence the 32 registers are divided into 4 banks, each having 8 Registers R0… R7.
	Types of Registers:
	General Purpose Registers:
	Banks and Registers:

	 It is an 8-bit register.
	 These flags indicate status of the current result.
	 They are changed by the ALU after every arithmetic or logic operation.
	 The flags can also be changed by the programmer.
	CY - CARRY FLAG
	AC – AUXILIARY CARRY FLAG
	OVR - OVERFLOW FLAG
	P - PARITY FLAG
	F0 – USER DEFINED FLAG
	 This flag is available to the programmer.
	RS1, RS0 – REGISTER BANK SELECT
	NUMERICAL EXAMPLES FOR FLAG REGISTER:

	Timer Overflow Interrupts (TF1 and TF0)
	Serial Port Interrupt (RI or TI)
	Interrupt priority
	External Interrupts (INT1 and INT0):
	Interrupt Sequence
	Returning Sequence
	Interrupt Priorities
	External interrupts in 8051
	Example
	 Note: Data transfer between two RAM registers is not allowed.
	6.14 SERIAL COMMUNICATION:
	Principle behind Interfacing LED with 8051:
	Circuit Diagram
	Circuit Design

	Stepper Motor interface- Schematic Diagram (for 8051)

