Syntax Analysis

Syntax analyzers follow production rules defined by means of
context-free grammar. The way the production rules are implemented
(derivation) divides parsing into two types: top-down parsing and bottom-

up parsing.

.

4‘/"
w

Top-Down Bottom-Up

Parser Parser

Top-Down Parser
Top-Down Parser starts constructing a parse tree from the root node

gradually moving down to the leaf nodes.

Example: Suppose we have a grammar:

S—->FE

E-STIE+T

T - F|T*F

F —0|1|2]3|4|5|6]7|8|9|€

Draw parser tree for derivation the following sentence: 1+2*3

Solution:

14

Syntax Analysis

The types of top-down parsing are shown in figure bellow:

Top-Down

|

Recursive Descent

RN

Back-tracking Non Back-tracking

|

Predictive Parser

V
LL Parser

Recursive Descent Parsing
Recursive descent is a top-down parsing technique that constructs the

parse tree from the top and the input is read from left to right. It uses
procedures for every terminal and non-terminal entity. This parsing
technique recursively parses the input to make a parse tree, which may or
may not require back-tracking. But the grammar associated with it (if not
left factored) cannot avoid back-tracking. A form of recursive-descent
parsing that does not require any back-tracking is known as predictive
parsing.
Example 1 : Write pseudo-code to parser the following rule or
production by recursive descent .
Factor - (exp)|number
Solution:
Procedure Factor
Begin
Case token of (:
match (();
exp;
match());
number,;
end case;
end factor;
Procedure match ()

Begin

15

Syntax Analysis

If token =="("|| ")"
accept input

else

reject input

end if

end match

Example 2 : Write pseudo-code to parser the following rule or
production by recursive descent .
stmt — if (exp)statment
lif (exp)statment else statment

Solution:
Procedure stmt Procedure match(expected_token)
Begin Begin
match(if); If token == expected_token;
match((); Get Token ;
exp; else
match()); error;
statement; end if ;
if token=else then end match;
match(else);
match (statement);
end if;
end stmt;

What the Different between Top-Down parser with and

without back tracking
In Top-Down Parsing with Backtracking, Parser will attempt multiple

rules or production to discover the match for input string by backtracking
at every step of derivation.so the different between top-down parser with

and without back tracking is shown in table below.

16

Syntax Analysis

Top-Down Parsing with Top-Down Parsing without
Backtracking Backtracking

The parser can try all alternatives The parser has to select correct
in any order till it successfully alternatives at each step.
parses the string.

Backtracking takes a lot of time, It takes less time.
A Grammar can have left Left Recursion will be removed
recursion, before doing parsing.
t can be difficult to find where It can easy to find the location of
actually error has occurred. the error

Predictive Parsing Method
In many cases, by carefully writing a grammar eliminating left

recursion from it, and left factoring the resulting grammar, we can obtain
a grammar that can be parsed by a non backtracking predictive parser. We
can build a predictive parser by maintaining a stack. The key problem
during predictive parser is that of determining the production to be applied
for a nonterminal. The non-recursive parser looks up the production to be
applied in a parsing table.
left recursion 411} ae 43lixs 43 sa0 20| 8 AUS A e ¢ VAl (e S
50 Jlae Al g Leldat (S 4y sai a0) B e J geanll WiSay cJeft factoring « e

£ At) Al el e Jaliall 5 5l e (o 58 Jlae oLy Wiy | any e
2 nonterminal e 4iuks st 31 production waai o (gl g sall Jlaal

alaill Jgan 8 adndat S5l ALY e sy non-recursive parser

A table-driven predictive parser has an input buffer, a stack, a parsing
table, and an output stream. The input buffer contains the string to be
parsed, followed by $, (a symbol used as a right endmarker to indicate the
end of the input string). The stack contains a sequence of grammar symbols
with $ on the bottom,(indicating the bottom of the stack). Initially, the

stack contains the start symbol of the grammar on the top of $.

17

Syntax Analysis

Example:

E -E+T|T

T-T*F|F

F—id|(E)

First step

Removing left recursion for grammar
E->TE

E - +TE|e

T-FT

T -* FT|e

F— id|(E)

Second step

Compute First set and Follow set

First set Follow set

(E) ={id,(} (E)={5)}
(E) ={+.€} (E) ={$)}
(T) ={id,(} WEL ")),
(M ={*e€} (D) ={ % $)}
(F) ={id,(} B ={&5+$)}

Rules of compute Follow :
1
2
3

Put $ in follow set of start symbol which is represents end of file

Follow set of Non-terminals (X) is next terminal after it

If the next Non-terminals (X) is Non-terminals (Y) then get first this

Non-terminals (Y) and put in follow of Non-terminals (X).

SN
1

If the following of the Non-terminals (X) is € then add follow set of

current rule left symbol .

Third step
Building parsing or stack table

18

Syntax Analysis

First set Follow set
(E)={id.(} (E) ={$)}
(E) ={+€} (E) ={$))}
(T) ={id,(} WEL ")),
(M ={*e€} (D) ={ & $)}
(F) ={id,(} (F) ={ &5+ $)}

NTT\ id (+ *) $

E E-TE |E->TE

E E - +TE E—-€e | E—€

T T->FT | T->FT

~|
ﬂ
l

m

—x FT

- F-id | F- (E) F— (E)

:a)\.ci d)d&j\ 9&4\3 dagwa Gaa e
first <l -1
€ s & follow JI) Jaws -2
end of file or $ & Wlira € e 32cldll (5 siai laric -3
Fourth step
Derivation based on stack or parser table with expression =(id)

id (+ *) $
E E-TE E-TE
i E—-+TE Foe E-e€
T T->FT | T-FT
T Toe |T>FT | 5, | Toe

E F— id F- (E) Fo (E)

19

Syntax Analysis

stack input output
$E (id)$
$EM lid)s E>TE
$ETH lid)s TSFT
$ET)E((id)$ F- (E)
$ET)E 0)s
$ET)EM B E>TE
$ET)ETH 0)s T>FT
$ET)ETid id)$ F— id
$ET)ER s
SETH Js Toe
$ET))5 E-ce€
$Em |
sB | T-e
$ $ E—-€

U gia o A2 dealdl o) jueedll (3 GuaSall 4les 61 §) AV Jaa g ilay
predicative paring methods e eV sacall 038 (jaia

20

