

Compiler Lectures: M.Sc. Rasha Subhi Hameed

1

Programming Languages

Hierarchy of Programming Languages based on increasing machine

independence includes the following:

1- Machine – level languages.

2- Assembly languages.

3- High – level or user oriented languages.

4- Problem - oriented language.

1- Machine level language: is the lowest form of computer. Each

instruction in program is represented by numeric code, and numerical

addresses are used throughout the program to refer to memory location in

the computer's memory.

2- Assembly language: is essentially symbolic version of machine level

language, each operation code is given a symbolic code such ADD for

addition and MULT for multiplication.

3- A high level language such as Pascal, C.

4- A problem oriented language provides for the expression of problems in

specific application or problem area. Examples of such as languages are

SQL for database retrieval application problem oriented language.

Using a high-level language for programming has a large impact on how

fast

programs can be developed. The main reasons for this are:

 Compared to machine language, the notation used by programming

languages is closer to the way humans think about problems.

 The compiler can spot some obvious programming mistakes.

 Programs written in a high-level language tend to be shorter than

equivalent programs written in machine language.

Compiler Lectures: M.Sc. Rasha Subhi Hameed

2

 Another advantage of using a high-level level language is that the same

program can be compiled to many different machine languages and, hence,

be brought run on many different machines.

Language processing system



 Actually we are trying to convert the high-level language (the source-

code we written) to Low-level language (Machine Language). This process

involves four stages and utilizes following 'tools':

1. Pre-processor

2. Compiler

3. Assembler

4. Loader/Linker

Compiler

 Is a program that reads a program written in one language, (the source

language) and translates into an equivalent program in another language

(the target language) as shown in figure (1).

Figure (1): General structure of compiler program

Compiler Source program

 High level language

Target program

Low level language

Or

Machine language

program

Error Massage

Compiler Lectures: M.Sc. Rasha Subhi Hameed

3

 Translator

 A translator is program that takes as input a program written in a given

programming language (the source program) and produce as output

program in another language (the object or target program). As an

important part of this translation process, the compiler reports to its user

the presence of errors in the source program as shown in figure (2).

If the source language being translated is assembly language, and the object

program is machine language, the translator is called Assembler.

Figure (2) : General structure of Assembler program

 A translator, which transforms a high level language such as C in to a

particular computers machine or assembly language, called Compiler.

Another kind of translator called an Interpreter . An interpreter converts

high level language into low level machine language, just like a compiler.

But they are different in the way they read the input. The Compiler in one

go reads the inputs, does the processing and executes the source code

whereas the interpreter does the same line by line. Compiler scans the

entire program and translates it as a whole into machine code whereas an

interpreter translates the program one statement at a time. Interpreted

Source program

 assemble language

program

Target program

Machine language

program

Error Massage

Assembler

Compiler Lectures: M.Sc. Rasha Subhi Hameed

4

programs are usually slower with respect to compiled ones. Figure (3)

illustrate the interpretation process.

Figure (3) : Interpretation process

The Analysis - Synthesis model of compilation

There are two parts to compilation: analysis and synthesis.

1- Analysis phase (Front- end):- an intermediate representation is

created from the give source code

1. Lexical Analyzer (scanner)

2. Syntax Analyzer (parser)

3. Semantic Analyzer

 4. Intermediate Code generator

2- Synthesis Phase (Back-end) :- – equivalent target program is created

from the intermediate representation. It has two components:

1. Code Optimizer

2. Code Generator

Figure (4) : The Analysis - Synthesis model of compilation

Source program

Result

Data

 Interpreter

Source language

Front-End

Language specific

Back-End

Language specific
Target language

Compiler Lectures: M.Sc. Rasha Subhi Hameed

5

Phases of a Compiler:

 A Compiler takes as input a source program and produces as output an

equivalent sequence of machine instructions. This process is so complex

that it is divided into a series of sub process called Phases. Figure (5)

illustrated the compiler phases

- The different phases of a compiler are as follows

Analysis Phases:

1. Lexical Analysis

2. Syntax Analysis

3. Semantic Analysis

 4. Intermediate Code generator

Synthesis Phases:

5. Code Optimization

6. Code generation

Figure (5) : Phases of Compiler

Compiler Lectures: M.Sc. Rasha Subhi Hameed

6

Lexeme1

Compiler structure:

1- lexical analysis

1.1 The Role of lexical analysis

 The lexical analyzer is the first stage of a compiler. The main task of

lexical analyzer is to read the input characters of the source program, group

them into lexemes and produce as output a sequence of tokens for each

lexeme in the source program.

I f (i <= 3)

Figure (6): Example of the lexeme

 As shown in figure (6) the lexical analyzer scanning the input source

characters one by one whenever formatted lexeme then results to this

lexeme token that the parser uses for syntax analysis as shown in figure

(7).

Figure (7): Interaction of lexical analyzer with parser

<Tokens>
Input source

sequence of

characters

Lexeme1

Compiler Lectures: M.Sc. Rasha Subhi Hameed

7

1.2 lexical analyzer tasks

 lexical analyzer tasks are divided into following process:

a) Scanning: consists of the simple processes that don't require

tokenization of the input, such as deletion of comments compaction of

consecutive whitespace characters into one.

b) Lexical analysis proper: is more complex portion, where the scanner

produces the sequence of tokens as output.

1.3 Tokens, Patterns, Lexemes

 When discussing lexical analysis ,we use three related but distinct terms :

 Tokens is pair consisting a token name and optional attributed value.

Token name is abstract symbol representing kind of token unit which are

1) Identifiers 2) keywords 3) operators 4) special symbols 5) constants.

The token names are the input symbols that the parser processes.

Note: The optional attributed means it can be and may not exist.

For example <If > or < id , pointer symbol-table entry E>

Lexeme is a sequence of characters in the source program that is matched

by the pattern for a token. In general, the lexeme is stored in symbol table

specially if the lexeme is identifier.

Pattern: is a description of the form that the lexeme of token my take. In

case of keyword as a token the pattern is the sequence of characters that

form the keyword.

Compiler Lectures: M.Sc. Rasha Subhi Hameed

8

Table (1): Example of the token

Tokens Pattern Example of Lexeme

if Characters I,f if

else Characters e,l,s,e else

Comparison <, >, <= , >= , == , != <, >, <= , >= , == , !=

id Letter followed by letter or digit X ,y3,count

Number Any numeric constant 3.14159, 0, 6, 02e23

 literal fixed value in source code String s = "cat"

int a=1

 In many programming languages, most or all of the tokens are:

1. One token for each keyword. The pattern for a keyword is the same as

the keyword itself.

2. Tokens for the1 operators, either individually or in classes such as the

token comparison.

3. One token representing all identifiers.

4. One or more tokens representing constants, such as numbers and

literal

5. Tokens for each punctuation symbol, such as left and right parentheses,

comma, and semicolon.

1.4 Attributed of token

 The attribute of token is a structure that combines several pieces of

information the most important example is the token of identifier. The

properties of attributed of identifier is a pointer to symbol table entry for

that identifier as shown in figure (8).

https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Source_code

Compiler Lectures: M.Sc. Rasha Subhi Hameed

9

Figure (8) : Example of the attribute of token

1.5 Input buffer

 Lexical analyzer scans the characters of the source program one at a

time to discover tokens. It is desirable for the lexical analyzer to input from

buffer.

 1.5.1 Buffer pairs

 E = M * C * * 2 eof

Figure (9) Using a pair of input buffer.

1- Pointer lexeme Begin, marks the beginning of the token being

discovered.

Begin look head

First buffer second buffer

Compiler Lectures: M.Sc. Rasha Subhi Hameed

10

2- look head pointer scans ahead of the beginning pointer, until a

token is discovered.

Symbol Table

 A symbol table is a table with two fields. A name field and an

information field. This table is generally used to store information about

various source language constructs. The information is collected by the

analysis phase of the compiler and used by the synthesis phase to generate

the target code. We required several capabilities of the symbol table we

need to be able to:

1- Determine if a given name is in the table, the symbol table routines are

concerned with saving and retrieving tokens.

insert(s,t) : this function is to add a new name to the table

Lookup(s) : returns index of the entry for string s, or 0 if s is not

found.

2- Access the information associated with a given name, and add new

information for a given name.

3- Delete a name or group of names from the tables.

For example, consider tokens begin, we can initialize the symbol-table

using the function: insert("begin",1).

 Symbol table management refers to the symbol table’s storage structure,

its construction in the analysis phase and its use during the whole

compilation.

1) A symbol table is a data structure, where information about program

objects is gathered.

2) Is used in all phases of compiler.

Compiler Lectures: M.Sc. Rasha Subhi Hameed

11

3) The symbol table is built up during the lexical and syntax analysis.

4) Help for other phases during compilation:

1.6 Specification of Tokens

 Regular expressions are an important notation for specifying patterns.

Each pattern matches a set of strings, so regular expressions will serve as

names for set of strings.

1.6.1 Strings and Languages

 The term of alphabet or character class denotes any finite set of

symbols. Typical examples of symbol are letter and characters. The set {0,

1} is the binary alphabet ASCII is the examples of computer alphabets.

String: is a finite sequence of symbols taken from that alphabet. The terms

sentence and word are often used as synonyms for term "string".

|S|: is the Length of the string S.

Example: |banana| =6

Empty String (∈): special string of length zero.

Exponentiation of Strings

S2 = SS S3 = SSS S4 = SSSS

Si is the string S repeated i times.

By definition S0 is an empty string.

Languages: A language is any set of string formed some fixed alphabet.

Compiler Lectures: M.Sc. Rasha Subhi Hameed

12

Operations on Languages

 There are several important operations that can be applied to languages.

For lexical Analysis the operations are:

1- Union.

2- Concatenation.

3- Closure.

Operation Definition

Union L and M

written L∪M

L∪M={s | s is in L or s in M}

Concatenation of L

and M written LM

LM={st | s is in L and t is in M}

Kleene closure of L

written L*

L* denotes "zero or more Concatenation of "L

Positive closure of L

written L+

L+ denotes "One or more Concatenation of "L

Example: Let L and M be two languages where L = {a, b, c} and

D= {0, 1} then

 Union: LUD = {a, b, c, 0,1}

 Concatenation: LD = {a0,a1, b0, b1, c0,c1}

 Expontentiation : L2 = LL

By definition: L0= {∈}

Compiler Lectures: M.Sc. Rasha Subhi Hameed

13

1.6.2 Regular Definitions

A regular definition gives names to certain regular expressions and uses

those names in other regular expressions.

Example1: The set of C identifiers is the set of strings of letters and digits

beginning with a letter.Here is a regular definition for this set:

letter → A | B | . . . | Z | a | b | . . . | z

digit → 0 | 1 | 2 | . . . | 9

id → letter (letter | digit)*

 The regular expression id is the pattern for the C identifier token and

defines letter and digit. Where letter is a regular expression for the set of

all upper-case and lower case letters in the alphabet and digit is the regular

for the set of all decimal digits.

Example 2: Unsigned numbers in Pascal are strings such as 5280, 39.37,

6.336E4, or 1.894E-4. The following regular definition provides a precise

specification for this class of strings:

digit → 0 | 1 | 2 | . . . | 9

digits → digit +

optional-fraction → . digits | ∈

optional-exponent → (E (+ | - | ∈) digits) |∈

Num → digits optional-fraction optional-exponent

This regular definition says that

Compiler Lectures: M.Sc. Rasha Subhi Hameed

14

Running Example:

 Stmt  if Expr then Stmt

 | if Expr then Stmt else Stmt

 | e

Expr  Term relop term|Term

Term id| number

Terminal tokens

{if, else, then}  keywords

 relop  operation

 Number  number

 id  identifier

 An optional-fraction is either a decimal point followed by one or

more digits or it is missing (i.e., an empty string).

 An optional-exponent is either an empty string or it is the letter E

followed by an optional + or - sign, followed by one or more digits.

 In the above example, the production of the regular definition has two

type of tokens (terminal and non -terminal), the lexical analysis interest

about terminal tokens such as (if, then, else, and relop (relational

operation).

Compiler Lectures: M.Sc. Rasha Subhi Hameed

15

 digit → 0 | 1 | 2 | . . . | 9

 digits → digit+

 Number → digit (. digits | ∈)(E (+ | - | ∈) digits) |∈

 letter → A | B | . . . | Z | a | b | . . . | z

 id → letter (letter | digit)*

 if → if

 else → else

 then → then

 relop → <|>|<=|>=|=|<>

Now we need regular definition for each terminal tokens which is

representing patterns for each token as following.

 In addition , we assign the lexical analyzer the job of stripping out white

space ,by recognizing the "token" ws defined by

 Since the {blank ,tab , newline } are terminal tokens then the lexical

analyzer can be recognition by single ASCII code for each them.as noted

the assign (+) means there is a possibility of one or more spaces.

"else "represent direct

pattern matching

 ws → (blank |tab | newline)+

Compiler Lectures: M.Sc. Rasha Subhi Hameed

16

Table (2): Lexeme , Tokens , and attributes for Running example

Lexeme Token Attribute value

Any ws - -

If If -

Then Then -

Else Else -

Any id id Pointer to table entry

Any number number Pointer to table entry

< Relop LT

<= Relop LE

= Relop EQ

<> Relop NE

> Relop GT

>= Relop GE

Transition diagrams

 A transition diagram is similar to a flowchart for (a part of) the lexical.

We draw one for each possible token. It shows the decisions that must be

made based on the input seen. The two main components are circles

representing states and arrows representing edges.

Example : transition diagram for the relational operation (relop) shown in

figure (10).

Compiler Lectures: M.Sc. Rasha Subhi Hameed

17

Figure (10): Transition diagram of the relop

1. The double circles represent accepting or final states at which point a

lexeme has been found. There is often an action to be done (e.g., returning

the token), which is written to the right of the double circle.

2. Each edge is labeling by symbol or set of symbols.

Compiler Lectures: M.Sc. Rasha Subhi Hameed

18

 Recognition of tokens

1. Recognition of Reserved Words and Identifiers

 To turn a collection of transition diagrams into a program, we construct

a segment of code for each state. The first step to be done in the code for

any state is to obtain the next character from the input buffer. For this

purpose, we use a function GETCHAR, which returns the next character,

advancing the look ahead pointer at each call. The next step is to determine

which edge, if any out of the state is labeled by a character, or class of

characters that includes the character just read. If no such edge is found,

and the state is not one which indicates that a token has been found

(indicated by a double circle), we have failed to find this token. The look

ahead pointer must be retracted to where the beginning pointer is, and

another token must be search for using another token diagram. If all

transition diagrams have been tried without success, a lexical error has

been detected and an error correction routine must be called as shown in

figure (11) which is illustrated transition diagram for identifier.

Figure (11): Transition diagrams for identifier.

State 0 : C = GETCHAR ()

if LETTER(C) then goto state1

else FAIL()

State1 : C= GETCHAR ()

if LETTER(C) or DIGIT(C) then goto state1

Compiler Lectures: M.Sc. Rasha Subhi Hameed

19

else if DELIMTER(C) then goto state2

else FAIL ()

State2: RETRACT ()

return(id, INSTALL())

LETTER(C) is a procedure which return true if and only if C is a letter.

DIGIT(C) is a procedure which return true if and only if C is one of the

digit 0,1,…9.

DELIMITER(C) is a procedure which return true whenever C is character

that could follow an identifier. The delimiter may be: blank, arithmetic or

logical operator, left parenthesis, equals sign, comma,…

 Install () checks if the lexeme is already in the symbol table

Figure (12) : transition diagram of the keyword then.

Figure (13) : transition diagram of the keyword then.

Non let/dig

start 0
t

1
h

2
e

3
n

4 5

*

Compiler Lectures: M.Sc. Rasha Subhi Hameed

20

Figure (14) : transition diagram of the number.

The lexical analyzer returns to parser a representation for the token it has

found. This representation is:

• An integer code if there is a simple construct such as a left parenthesis,

comma or colon.

• Or a pair consisting of an integer code and a pointer to a table if the

token is more complex element such as an identifier or constant.

