
Advanced Data Base SQL /Lec 2 Qasim Alobaidy

1

1.4 Update Table data

Data A very useful operation is update previous inserted data. The

syntax to perform this operation is the "Update Table". The syntax can

be slight different in some situations like it will be presented in next

examples.

In the first situation we will update just one field considering the value

of other field in the same table.

Update Products Set unit_price = 1.99 Where description = 'Eggs';

After the execution of this script the unit_price of eggs is 1.99$. The

others fields of the tables remains untouched.

In the second situation we will update two fields simultaneously.

Update Products Set available_stock = 25, minimal_stock = 10 Where

description = 'Eggs';

After the execution of this script the available stock and minimal stock

of eggs will be changed to 25 and 10, respectively.

In the third situation we will update again the price field, but this time

for the soda product.

Update Products Set unit_price = unit_price * 1.25 Where description =

'Soda';

After the execution of this script the unit price of soda product will be

increased by 25%.

Finally, in the fourth situation we will update the date delivery order of

the Peter. For that, we will need to use and access two tables: "Orders"

and "Customers".

Advanced Data Base SQL /Lec 2 Qasim Alobaidy

2

Update Orders Set date_delivery = '2015-12-29' Where

Orders.cod_customer = (Select cod_customer From Customers Where

name='Peter');

Practical SQL Guide for Relational Databases 2016 Page 18 After the

execution of this script, the delivery date of all orders made by Peter will

be 29th December of 2015.

The above script doesn't work in MySQL databases. To make it work in

MySQL we shall perform a slight modification.

Update Orders O, Customers C Set O.date_delivery = '2015-12-29'

Where O.cod_customer = C.cod_customer and C.name='Peter';

MySQL needs that both tables are declared in the beginning of "Update"

clause. Using this approach we don't anymore to use a sub-query to get

match values with Customers table.

1.5 Delete data

The delete instruction in SQL is used to delete data from a table. The

most basic syntax is to use this instruction to delete all data from a table.

The syntax to perform this operation is exactly the same for all databases

(MySQL, SQL Server and Oracle).

DELETE FROM Customers; or

DELETE * FROM Customers;

The two syntaxes presented are equivalent in terms of functionality and

performance. It has the function to delete all data available in Customers

table.

Advanced Data Base SQL /Lec 2 Qasim Alobaidy

3

If we want to delete a number of elements that accomplishes a given

rule, we can add the "Where" clause. We show here one example how to

perform it involving only one table.

Delete From OrdersProducts Where cod_product = 5;

After the execution of the above script the table "OrdersCustomers" will

not has any item with code of product equal to 5.

Now we will give two examples how to use the "Delete From..."

operation using multiple tables and sub-queries.

Delete From OrdersProducts Where cod_order IN (Select cod_order

From Orders Where cod_customer = 3);

This instruction deletes all itens from OrdersProducts which order was

performed by cod_customer equal to 3. The above instruction involves

calling OrdersProducts and Orders tables.

If we want to delete all itens from OrdersProducts that its products has

no content for the description field we can adopt the approach below.

Delete From OrdersProducts Where cod_product IN (Select cod_product

From Products Where description is NULL);

This instruction tries to delete from OrdersProducts all items which

description of the product is null. This instruction is well formed,

however it doesn't delete any data because the description field in table

Products was declared as not null. Therefore at this point it won't be

possible to find any empty description of product.

Advanced Data Base SQL /Lec 2 Qasim Alobaidy

4

Finally SQL offers the "Truncate" command to removes all rows from a

table. The operation cannot be rolled back and no triggers will be fired.

As such, TRUCATE is faster and doesn't use as much undo space as a

DELETE, but it should be used carefully. We give an example below

how to use it.

TRUNCATE TABLE Customers;

This instruction would remove all data from Customers table. This

instruction is not available in the script of database, because the database

contains already orders associated to customers.

It is important to highlight that DROP (that will be seen in next chapter)

and TRUNCATE are DDL commands, whereas DELETE is a DML

command. As such, DELETE operations can be rolled back (undone),

while DROP and TRUNCATE operations cannot be rolled back.

1.6 Remove Tables

 Remove a table from a database is one of the easiest operations in SQL.

However, it shouldn't be mix with the instruction "delete from..." that

deletes table. In order to remove a table from a database we should use

the "Drop Table..." command. This instruction works in all three

databases (MySQL, SQL Server and Oracle). DROP TABLE

Customers;

Advanced Data Base SQL /Lec 2 Qasim Alobaidy

5

This instruction tries to remove the table Customers. However, it is only

possible to remove a table if the primary key of this table is not being

used by other table. In our database, this instruction will not work

because the primary key in table is reference by foreign keys. However,

it would be totally possible to remove the "OrdersProducts" table from

the system.

DROP TABLE OrdersProducts;

If used, this instruction would remove the OrdersProducts table from the

system.

1.7 SQL Queries - Basic Structure

The basic structure of a SQL query is composed by the elements below.

Only the two initial clauses are mandatory ("Select" and "From"). The

others elements are optional. One of the most used queries in SQL is to

show all the contents of a table. It can be used liked in the example

below.

Select * From Customers;

Advanced Data Base SQL /Lec 2 Qasim Alobaidy

6

This instruction shows all content of table Customers. It shows all

attributes of the table. It is possible to choose only the fields to be

shown, like in the example below.

Select Name, Country From Customers;

This instruction shows the content of fields Name and Country of table

Customers.

If we only want to show the distinct country of customers, we can use

the instruction "distinct" in Select clause, like it is shown below.

Select distinct Country From Customers;

This instruction shows the content of Country, but only distinct

elements. In this situation only the country "Portugal" is shown.

We can use also the "Where" clause to restrict the elements of a table

that will be shown. An example of this approach is shown below.

Select * From Products Where Available_stock is not NULL;

This instruction shows all products that have stock in warehouse. It is

possible to use several conditions in a "Where" clause like it is shown

below.

Select * From Products Where (Available_stock is NULL and unit_price

> 1.00) or minimal_stock > 0;

This instruction shows all products which there is stock in warehouse

and price is higher than 1€. It also includes in the result all field which

defined minimal_stock is positive.

Advanced Data Base SQL /Lec 2 Qasim Alobaidy

7

In the "From" clause we can use more than one table. We show this

situation using two examples.

Select O.cod_order, O.date_order, O.DATE_DELIVERY, C.name From

Orders O, Customers C Where O.cod_customer =

C.COD_CUSTOMER;

This instruction shows the code of the order, date of order, date of

delivery and name of the customer for all orders available in the

database. It is particular relevant to look for the "Where" clause that is

mandatory and it needs to be used to guarantee the join between the

Orders and Customers table.

In the next example we use three tables in "From" clause.

Select OP.COD_PRODUCT, OP.QUANTITY, C.name From Orders O,

Customers C, OrdersProducts OP Where O.cod_customer =

C.COD_CUSTOMER and O.COD_ORDER = OP.COD_ORDER and

O.COD_ORDER = 3;

This instruction shows the code of the code of products, quantity of each

item and customer name for the order which code is equal to "3". This

instruction needs to use the Orders, OrdersProducts and Customers

tables. Like in the example before, in the "Where" clause we explicitly

details the joint conditions between the attributes of these three tables.

Finally we demonstrate how to use SQL with some basic math

operations. We start by using the operator "-" in the example below.

Advanced Data Base SQL /Lec 2 Qasim Alobaidy

8

Select cod_product, description, available_stock - minimal_stock as

marginStock From Products;

This instruction calculates the marginStock for all products and shows it

with the code of product and description.

